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Braided geometry is a natural generalization of supergeometry and is intimately con-
nected with noncommutative geometry. Synthetic differential geometry is a peppy dis-
sident in the stale regime of orthodox differential geometry, just as Grothendieck’s
category-theoretic revolution in algebraic geometry was in the middle of the 20th cen-
tury. Our previous paper [Nishimura (1998) International Journal of Theoretical Physics,
37, 2833–2849] was a gambit of our ambitious plan to approach braided geometry from
a synthetic viewpoint and to concoct what is supposedly to be calledsynthetic braided
geometry. As its sequel this paper is intended to give a synthetic treatment of braided
connections, in which the second Bianchi identity is established. Considerations are
confined to the case that the braided monoidal category at issue is a category of vector
spaces graded by a finite Abelian group with itsnonsymmetricbraiding being given
by phase factors. Thus the present paper encompasses physical systems amenable to
anyonicstatistics.

0. INTRODUCTION

Synthetic differential geometryis the vanguard of modern differential geom-
etry, in which nilpotent infinitesimals are not only abundantly available as in the
age of Riemann, Lie and Cartan, but also coherently organized with mathemat-
ical rigor. Synthetic differential geometry was pioneered by Lawvere, a famous
category-theorist, in the middle of the 1960’s, while Grothendieck revolutionized
algebraic geometry by exploiting ideas of category theory (e.g., representable func-
tors). Although Grothendieck’s category-theoretic revolution in algebraic geom-
etry during the middle of the 20th century is well appreciated among contemporary
algebraic geometers, Lawvere’s corresponding one in differential geometry has
not received more than studied indifference from orthodox differential geometers.
The so-called tensor analysis on infinitesimal entities (e.g., vector fields) in or-
thodox differential geometry is often stodgy and factitious, concealing the truly
infinitesimal nature of infinitesimal considerations under a topsy-turvy of lengthy
calculations in a dull drone. Synthetic differential geometry enables us to endow
differential geometry with an infinitesimal horizon relatively independent of local
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and global ones. The standard notion of smooth manifold in orthodox differential
geometry is not susceptible of any reasonable or fruitful generalization to non-
commutative or braided geometry, while the central notion of microlinear space
in synthetic differential geometry is. For good textbooks on synthetic differential
geometry, the reader is referred to Lavendhomme (1996) (devoted mainly to a con-
sistently axiomatic presentation of synthetic differential geometry) and Moerdijk
and Reyes (1991) (devoted to model theory of synthetic differential geometry)
as well as to Kock’s bible of the field (Kock, 1981). We assume the reader to be
familiar with Lavendhomme (1996) up to Chapter 5.

Supergeometryenables us to deal with bosons and fermions on an equal
footing by intermingling them. It is expected to play a central role in any possible
unification of relativity and quantum theory. Supergeometry lies at the entrance to
noncommutative geometry in the sense that the ring of real supernumbers is not
commutative but graded-commutative. For good textbooks on supergeometry the
reader is referred to Bartociet al. (1991), Leites (1980), and Manin (1988). We
have approached supergeometry from a synthetic viewpoint in Nishimura (1998a,
1999, 2000a,c). In particular, a synthetic treatment of superconnections was given
in Nishimura (2000a).

Braided geometryis an elegant and far-reaching generalization of superge-
ometry, in which the category of vector spaces is replaced by a braided monoidal
category. It is pioneered and championed by Majid (1995a,b), Marcinek (1994),
and others. The standard gadget for transmogrifying braided geometry into non-
commutative geometry is bosonization, while the standard device for translating
noncommutative geometry into braided geometry is transmutation. If the braiding
is symmetric, braided geometry lies in the very periphery of supergeometry so
that it is not truely braided. We will consider a (nonsymmetric) braided monoidal
category of vector spaces graded by a finite Abelian group whose braiding is given
by a phase factor. Our considerations do not only encompass color geometry but
also anyonic geometry. For anyonic geometry the reader is referred to Majid (1993,
1994, 1997).

As a sequel to Nishimura (1998b) this paper gives a synthetic treatment of
braided connections by generalizing our synthetic treatment of superconnections
in Nishimura (2000a). Basic definitions and basic properties will be presented in
Section 3. Section 5 is devoted to a combinatorial treatment of the so-called second
Bianchi identity. Sections 4 and 6 are devoted to induced braided connections. We
have gathered some preliminaries in Section 1. We deal in haste with braided
exterior differential calculus in Section 2.

As is usual in synthetic differential geometry, the reader should presume
throughout the paper that we are working in a (not necessarily Boolean) topos,
so that the excluded middle and Zorn’s lemma have to be avoided. Objects of the
topos go under such aliases as a “space,” a “set,” etc.
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1. PRELIMINARIES

1.1. Basic Braided Algebra

We choose, once and for all, a braided monoidal categoryC= (C ,⊗, 1,8, l ,
r ,9) abiding by the following conditions:

(1.1) C is a subcategory of the category of allk -linear spaces with a fieldk .
(1.2) ⊗ is the standard tensor product ofk -linear spaces.
(1.3) The unit object1 is k , regarded as ak -linear space in the standard

manner.
(1.4) The associativity constraint8, the left unit constraintl and the right unit

constraintr are the standard ones ofk -linear spaces.
(1.5) There exists a finite setΠ of mutually nonisomorphic objects ofC includ-

ing the unit object1, say,Π = {1, 2, 3, . . . ,k}, such that
(1.5.1) Every objectp in Π is a one-dimensionalk -linear space.
(1.5.2) The setΠ is closed under⊗, i.e., for any objectsp, q in Π, there

exists an objectr in Π such thatp⊗ q is isomorphic tor in the
categoryC (we will constantly usep, q, r , . . .with or without
subscripts as variables overΠ).

(1.5.3) Every direct sum of (possibly infinitely many) copies of objects in
Π as well as all its associated canonical injections and projections
belongs toC , and any object inC is a direct sum of copies of
objects inΠ.

(1.6) For any morphismα : U → V in C , if α happens to be an isomorphism
of k -linear spaces, thenα−1 : V → U belongs toC so thatα is an isomor-
phism inC .

Note that we have not assumed9 to be symmetric. As is the custom in
dealing with monoidal categories, we will often proceed as if the monoidal category
(C ,⊗, 1,8, l , r ) were strict, which is justifiable by Theorem XI.5.3 of Kassel
(1995). We will often writep+ q for r isomorphic top⊗ q in (1.5.2). Then it is
easy to see that

Proposition 1.1. Π is an abelian monoid with respect to the operation+ defined
above.

Proof: The associativity constraint8p,q,r : (p⊗ q)⊗ r → p⊗ (q⊗ r ) guar-
antees thatΠ is a semigroup. The left unit constraintl p : 1⊗ p → p and the
right unit constraintrp : p⊗ 1 → p warrants thatΠ is not only a semigroup but
also a monoid. The commutativity of the monoidΠ follows from the braiding
9p,q : p⊗ q → q⊗ p. ¤
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We choose an arbitrary nonzero elementxp of each one-dimensionalk -linear
spacep in Π once and for all. Forp, q in Π there exists a uniqueδp, q ∈ k such
that

(1.7) 9p,q(xp ⊗ xq) = δp,q(xq ⊗ xp)

It is easy to see that the numbersδp,q do not depend on our particular choice
of {xp}p∈Π.

Proposition 1.2. The numbersδp,q satisfy the following identities:

(1.8) δp,q+r = δp,qδp,r

(1.9) δp+q,r = δp,rδq,r

(1.10) δp,1 = δ1,p = 1

Proof: (1.8) and (1.9) follow from the so-called hexagon axiom, which claims
that9p,q⊗r = (idq ⊗9p,r ) ◦ (9p,q ⊗ idr ) and9p⊗q,r = (9p,r ⊗ idq) ◦ (idp ⊗9q,r )
up to associativity and unit constraints. Sinceδp,1 = δp,1+1 = δp,1δp,1 by (1.8), it
follows thatδp,1 = 1. Similary it follows from (1.9) thatδ1,p = 1. ¤

Since we do not assume9 to be symmetric, it does not follow thatδp,qδq,p= 1.
We require that

(1.11) Π is not only an abelian monoid but even an abelian group, so that, if
the braiding9 is symmetric, the pair (Π, δ) is a signed group in terms of
Marcinek (1991).

Given an objectU in C , the direct sum decomposition ofU into objects
in Π in (1.5.3) is not unique, but thep-component of Udefined as the direct
sum of the images of all the canonical injections fromp into U with respect to a
particular decomposition ofU , will soon turn out to be independent of our choice
of a particular decomposition ofU . Therefore we can safely writeUp for the
p-component ofU .

Proposition 1.3. Let0 and0′ be two direct sum decompositions of U in(1.5.3).
Then for anyp in Π, thep-components Up0 and Up

0′ of U with respect to0 and0′

coincide.

Proof: The proof uses a gimmick that is familiar in the proof of the well-known
fact of algebra that although a direct sum decomposition of a semisimple module
into simple ones is not unique, its homogeneous component affiliated to a particular
simple module is well defined, for which the reader is referred, e.g., to Wisbauer
(1991, Chapter 4). For any canonical injectionι of p into U in the decomposition
0 and any canonical projectionπ of U onto q in the decomposition0′ with
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p 6= q, π ◦ ι = 0, for otherwisep andq would be isomorphic inC by (1.7). This
means thatUp

0 ⊂ Up
0′ for anyp in Π. By interchanging the roles of0 and0′ in the

above discussion, we have thatUp
0′ ⊂ Up

0 for anyp in Π. Therefore the desired
conclusion follows. ¤

Corollary 1.4. U = U1⊕ · · · ⊕U k , so that each u∈ U can be decomposed
uniquely as u= u1+ · · · + uk with up ∈ Up for anyp in Π.

An elementu of U which happens to consist inUp for somep in Π is called
pure (of gradep), in which we will denotep by |u|.

The same gadget used in the proof of Proposition 1.3 establishes the
following:

Proposition 1.5. Any morphismα : U → V in C preserves grading (i.e.,
α(Up) ⊂ Vp for eachp in Π.

We now enjoin that the class of morphisms inC be saturated with respect to
this property in the following sense:

(1.12) For any objectsU, V in C , if a homomorphismα : U → V of k -linear
spaces preserves grading (i.e.,α(Up) ⊂ Vp for anyp in Π), thenα lies
in C .

The notion of an algebra in the braided monoidal categoryC, usually called a
C-algebra, can be defined diagrammatically as in Kassel (1995, Section III.1). A
C-algebraA with its productµA : A ⊗A → A is said to beC-commutative
if µA ◦9A ,A = µA . Given aC-algebraA , the notions of a leftA -module
and a rightA -module in C, usually called aleft A -C-moduleand a right
A -C-module, respectively, can be defined diagrammatically as in Majid (1995a,
Section 1.6). IfA happens to beC-commutative, a leftA -C-module M

with its left actionη : A ⊗M →M can naturally be converted into a right
A -C-module with its right actionη ◦9M ,A : M ⊗A →M , and vice versa, so
that the distinction between “left” and “right” is not essential in theC-commutative
case. In this case any leftA -C-module and, equivalently, any rightA -C-module
are naturallyA -bimodules. A left (right, respectively)A -C-moduleM is said
to beC-finite-dimensionalif there exists a finite-dimensionalk -linear spaceV in
C such thatA ⊗ V , (V ⊗A , respectively) is isomorphic toM as left (right,
respectively)A -C-modules. The notions of a leftA -module algebra and a
right A -module algebra inC, usually called aleft A -C-algebra and aright
A -C-algebra, respectively, can also be defined diagrammatically as in Majid
(1995a, Section 1.6). An ideal of aC-algebraA is said to be aC-idealif it belongs
toC . Other standard notions such as that of ahomomorphism ofC-algebrasthat can
easily be formulated diagrammatically will be used freely. Given aC-commutative
C-algebraA and anA -C-algebraB , SpecA B denotes the totality of homo-
morphisms ofA -C-algebra fromB into A .
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Now we choose, once and for all, aC-commutativeC-algebraR intended to
play a role of real numbers in our braided mathematics. So we must enjoin the
following axiom onR:

(1.13) R is aC-commutativeC-algebra.

Another important axiom onR will be presented in the next subsection.
Given a setZ, the totality of functions fromZ to R is anR-C-algebra with
componentwise operations whosep-component can naturally be identified with
the totality of functions fromZ toRp.

Given right R-C-modulesM and N , the totality HomR(M , N ) of
R-homomorphisms fromM to N is a leftR-module in the sense that for any
a ∈ R, anyu ∈M and anyf ∈ HomR(M , N ),

(1.14) (af) (u) = af (u).

It is not difficult to see that thep-component HompR(M , N ) of
HomR(M , N ) is the totality of f ∈HomR(M , N ) such that| f (u)| = |u| + p
for any u ∈M . We define HomR(M , N ) to be Hom1

R(M , N ) ⊕ · · ·⊕
HomK

R(M , N ), which is anR-C-module.
Given a finite sequencep1, . . . , pn in Π, we can form the tensorC-algebra

T(p1⊕ · · · ⊕ pn) of the k -linear spacep1⊕ · · · ⊕ pn. The quotientC-algebra
of T(p1⊕ · · · ⊕ pn) with respect to theC-ideal generated by{xp j xpi − δp j , pi xpi

xp j |1≤ i , j ≤ n} is a C-algebra called thepolynomialC-algebra of variables
xp1, . . . , xpn and is denoted byk [xp1, . . . , xpn ]. TheR-C-algebraR⊗2 k [xp1, . . . ,
xpn ] is called thepolynomialC-algebra of variables xp1, . . . , xpn overR or the
polynomialR-C-algebra of variables xp1, . . . , xpn and is denoted byR [xp1, . . . ,
xpn ]. TheR-C-algebraR [xp1, . . . xpn ] is characterized by the following universality
property:

Proposition 1.6. TheR-C-algebraR [xp1, . . . , xpn ] is C-commutative. For any
C-commutativeR-C-algebraA and any morphismsαi : pi →A in C (1≤ i ≤
n), there exists a unique homomorphismα ofR-C-algebras fromR[xp1, . . . , xpn ]
to A whose restriction topi is αi (1≤ i ≤ n).

1.2. Weil C-Algebras andC-Microlinearity

A Weil C-algebra is a C-commutativeR-C-algebraM which, regarded as
anR-module, is to be written asM = R ⊕m with the first component being the
R-C-algebra structure and the second being a finite-dimensional nilpotentC-ideal
(called theC-ideal of augmentation). By way of example, the quotientC-algebra
of the polynomialC-algebraR[X1, . . . , Xn] with respect to theC-ideal generated
by {Xi X j |1≤ i ≤ n} is a WeilC-algebra and is denoted byM(p1, . . . , pn) with

2⊗ denotes the braided tensor product.



P1: VENDOR/GDP/LOV/GAY P2: FTK/FOM/ QC: GCQ

International Journal of Theoretical Physics [ijtp] PP131-301587 May 18, 2001 11:43 Style file version Nov. 19th, 1999

Synthetic Braided Geometry II 1369

pi = |Xi | (1≤ i ≤ n). Given Weil C-algebrasM1 and M2 with their C-ideals
of augmentationm1 andm2 respectively, a homomorphism ofR-C-algebrasϕ :
M1→M2 is said to be ahomomorphism of WeilC-algebrasif it preserves their
C-ideals of augmentation, i.e., ifϕ(m1) ⊂ m2. A finite limit diagram ofR-C-
algebras is said to be agood finite limit diagram of WeilC-algebrasif every object
occurring in the diagram is a WeilC-algebra and every morphism occurring in
the diagram is a homomorphism of WeilC-algebras. The diagram obtained from
a good finite limit diagram of WeilC-algebras by taking SpecR is called aquasi-
colimit diagram ofC-small objects.

The Braided version of the general Kock axiom, called thegeneralC-Kock
axiom, is as follows:

(1.15) For any WeilC-algebraM, the canonical homomorphismM→ RSpecR(M)

of R-C-algebras is an isomorphism.

Spaces of the form SpecR (M) for some WeilC-algebraM are calledC-
infinitesimal spacesor C-small objects. TheC-infinitesimal space corresponding
to WeilC-algebraM(p1, . . . , pn) is denoted byD(p1, . . . , pn). By Proposition 1.6,
D(p1, . . . , pn) is to be identified with{(d1, . . . , dn) | di ∈ Rpi (1≤ i ≤ n), di dj =
0 (1≤ i , j ≤ n)}. We will often denoteD(p) by Dp.

The C-infinitesimal spaceD(1, . . . , k) plays a very important role in our
discussion of tangency. First we note thatD(1, . . . , k) can be identified with the
subset ofR consisting of alld ∈ R such thatdpdq = 0 for anyp, q ∈ Π. Under
this identification (d1, . . . , dk) ∈ D (1, . . . k) corresponds tod1+ · · · + dk ∈ R.
What concerns us most aboutD(1, . . . , k) is that the spaceD(1, . . . , k), regarded
as a subset ofR, is closed under the left and right actions ofR on itself.

Just as the general Kock axiom paved to the introduction of microlinear
spaces, its braided version invokes the notion of aC-microlinear space, which is
by definition a space M abiding by the following condition:

(1.16) For any good finite limit diagram of WeilC-algebras with its limitW, the
diagram obtained by taking SpecR and then exponentiating overM is a
limit diagram with its limit MSpecRW.

The following proposition guarantees that we have a plenty ofC-microlinear
spaces.

Proposition 1.7.

(1) Rp is a C-microlinear space for anyp ∈ Π.
(2) The class ofC-microlinear spaces is closed under limits and exponentia-

tion by an arbitrary space.

The above braided version of the general Kock axiom surely subsumes
the following braided version of the Kock–Lawvere axiom to be called the
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C-Kock–Lawvereaxiom:

(1.17) For any functionf : Dp → R, there exists uniqueb ∈ Rsuch thatf (d) =
f (0)+ bd for anyd ∈ Dp.

The axiom (1.17) is equivqlent to the following axiom:

(1.18) For any functionf : Dp → R, there exists uniqueb′ ∈ R such that
f (d) = f (0)+ db′ for anyd ∈ Dp.

We conclude this subsection by a definition. AnR-C-moduleM is said to
beC-Euclideanif it abides by the following equivalent of (1.17):

(1.19) For any functionf : Dp → M , there exists uniquex ∈M such that
f (d) = f (0)+ xd for anyd ∈ Dp.

1.3. C-Microcubes

A C-microlinear space M shall be chosen arbitrarily ones and for all. Given
(p1, . . . , pn) ∈ Πn, apure n-C-microcube of type(p1, . . . , pn) on M is a function
from Dp1 × · · · × Dpn to M . We denote byTp1,...,pn M the totality of puren-C-
microcubes of type (p1, . . . , pn) on M . We denote byTnM the set-theoretic union
of Tp1,...,pn M for all (p1, . . . , pn) ∈ Πn. In particular,T1M is usually denoted
by TM, and their elements are calledpure C-vectors tangent to M. Givenγ ∈
Tp1,...,pn M and e∈ Dpi , γ i

e denotes the mapping (di , . . . , dn−1) ∈ Dp1 × · · · ×
Dpi−1 × Dpi+1 × · · ·× Dpn | → γ (d1, . . . , di−1, e, di+1, . . . , dn−1), which is surely
a pure (n− 1)-C-microcube of type (p1, . . . , pi−1, pi+1, . . . , pn).

An n-C-microcube on Mis a mapping fromD(1, . . . , k)n to M . We denote by
TnM the totality ofn-C-microcubes onM . In particular,T1M is usually denoted
by TM and their elements are calledC-vectors tangent to M. Givenx ∈ M , we
denote the sets{t ∈ TpM | t(0)= x} and {t ∈ T M | t (0) = x} by Tp

x M and
Tx M , respectively. We have shown (Nishimura, 1998b, Section 4) thatTx M is an
R-C-module and that itsp-component can naturally be identified withTp

x M . We
have noted there also that theR-C-moduleTx M is C-Euclidean.

Given (p1, . . . , pn) ∈ Πn, the canonical injection ofDp1 × · · · × Dpn into
D(1, . . . , k)n and the canonical projection ofD(1, . . . , k)n ontoDp1 × · · · × Dpn

are denoted byιp1,...,pn andπp1,...,pn , respectively. The totality of ¯γ ∈ TnM with
γ̄ ◦ ιp1,...,pn ◦ πp1,...,pn = γ̄ can and shall hereafter be identified withTp1,...,pn M .

1.4. C-Vector Bundles

A mappingζ : E→ M of C-microlinear spaces is called aC-vector bundle
providing thatEx = ζ−1(x) is aC-EuclideanR-C-module for anyx ∈ M . We call
M thebase spaceof ζ andEx thefiber over x. The totality of mappingsλ : M → E
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with ζ ◦ λ = idM (idM denotes the identity transformation ofM) is denoted by
Secζ . The totality oft̄ ∈ TE with ζ ◦ t̄ = 0 (the zeroC-vector toM atζ ◦ t̄ (0))
is to be put down as aC-vector bundle overE and is to be denoted byV(E).

The tangent bundleτM : M D(1,...,k) → M is a C-vector bundle, whereτM

assigns, to eacht ∈ M D(1,...,k), t (0) ∈ M . If N is a C-EuclideanR-C-module,
which is aC-microlinear space, then the trivial bundleM ×N → M is a C-
vector bundle.

Various algebraic constructions in linearC-algebra can be carried over to
C-vector bundles. Ifζ : E→ M andη : F → M areC-vector bundles over the
same base spaceM , then their Whitney sumζ ⊕ η and the natural projection
πL (ζ,η) : L (ζ, η) → M areC-vector bundles, whereL (ζ, η) denotes the set-
theoretic union of Hom(ζx, ηx) for all x ∈ M .

2. BRAIDED EXTERIOR DIFFERENTIAL CALCULUS

Givenγ ∈ Tp1,...,pn M anda ∈ Rq, puren-C-microcubesγi̇ a andai̇ γ of type
(p1, . . . , pi − q, . . . , pn) on M (1≤ i ≤ n) are defined to be

(2.1) (γi̇ a) (d1, . . . , dn) = γ (d1, . . . , adi , . . . , dn)
(2.2) (ai̇ γ ) (d1, . . . , dn) = γ (d1, . . . , di a, . . . , dn)

for any (d1, . . . , dn) ∈ Dp1 × · · · × Dpi−q × · · · × Dpn .
LetSymn be the symmetric group of the set{1, . . . , n}. Givenγ ∈ Tp1,...,pn M

andσ ∈Symn, a puren-C-microcube6σ (γ ) of type (pσ−1(1), . . . , pσ−1(n)) on M
is defined as follows:

(2.3) 6σ (γ )(d1, . . . , dn) = γ (dσ (1), . . . , dσ (n)) for any (d1, . . . , dn) ∈ Dpσ−1(1) ×
· · · × Dpσ−1(n) .

A (differential) n-C-preform on Mis a mappingθ from TnM to R abiding
by the following conditions:

(2.4) θ (γi̇ a) = θ (a ˙i+1γ ) (1≤ i ≤ n− 1) whileθ (γṅa) = θ (γ ) a for anya ∈ R1

and anyγ ∈ TnM ;
(2.5) If γ is a puren-C-microsquare of type (p1, . . . , pn) on M , thenθ (γ ) =

−δpi ,pi+1θ (6(i ,i+1)(γ )) (1≤ i ≤ n− 1), where (i , i + 1) is the transposition
of i andi + 1.

A differential n-C-preformθ on M is calledC-braided if it abides by the
following condition:

(2.6) θ (γi̇ a) = θ (a ˙i+1γ ) (1≤ i ≤ n− 1) whileθ (γṅa) = θ (γ ) a for anyp ∈ Π,
a ∈ Rp and anyγ ∈ TnM .

We denote by4n(M) and∼4n(M) the totality of differentialn-C-preforms on
M and that ofC-braided differentialn-C-preforms onM , respectively.
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Givenγ̄ ∈ TnM anda ∈ R, n-C-microcubesγi̇ a andai̇ γ̄ on M (1≤ i ≤ n)
are defined as in (2.1) and (2.2), respectively. Given ¯γ ∈TnM andσ ∈Symn, an
n-C-microcube6σ (γ̄ ) on M is defined as in (2.3). A (differential) n-C-form on
M is a mappinḡθ from TnM toR subject to the following conditions:

(2.7) θ̄ (γ̄i̇ a) = θ̄ (a ˙i+1γ̄ ) (1≤ i ≤ n− 1) while θ̄ (γ̄ṅa) = θ̄ (γ̄ ) a for anya ∈ R
and any ¯γ ∈ TnM ;

(2.8) If γ̄ is a puren-C-micosquare of type (p1, . . . , pn) on M , then θ̄ (γ̄ ) =
−δpi ,pi+1 θ̄ (6(i ,i+1)(γ̄ )) (1≤ i ≤ n− 1).

We denote bỹ4n(M) the totality of differentialn-C-forms onM .

Proposition 2.1. There is a natural bijective correspondence between∼4n(M)
and4̃n(M).

Proof: By the same token as in Nishimura (1999, Proposition 1.2).¤

Therefore we can loosely and will often identifyC-braided differentialn-C-
preforms and differentialn-C-forms, so that we will loosely denote∼4n(M) and
4̃n(M) by the same symbol4n(M).

A marked pure n-C-microcube of type(p1, . . . , Pn) on M is a pair (γ , e) of a
puren-C-microcubeγ of type (p1, . . . , pn) on M ande= (e1, . . . , en) ∈ Dp1 ×
· · · × Dpn . We denote bỹTp1,...,pn M the totality of marked puren-C-microcubes of
type (p1, . . . , pn) on M . We denote bỹTnM the set-theoretic union of̃Tp1,...,pn M
for all (p1, . . . , pn) ∈ Πn.

Given (p1, . . . , pn) ∈ Πn, (γ , e) ∈ T̃p1,...,pn M andθ ∈ 4n(M) with e= (e1,
. . . , en), ϕθ (γ , e) ∈ R is defined as follows:

(2.9) ϕθ (γ , e) = θ (γ ) e1, . . . , en

Givene= (e1, . . . , en) ∈ Dp1 × · · · × Dpn anda ∈ Rq, elementsai̇ eand and
ei̇ a of Dp1 × · · · × Dpi+q × · · · × Dpn(1≤ i ≤ n) are defined to be

(2.10) ai̇ e= (e1, . . . , aei , . . . , en)
(2.11) ei̇ a = (e1, . . . , ei a, . . . , en)

Givene= (e1, . . . , en)∈ Dp1 × · · ·× Dpn andσ ∈Symn,6σ (e)∈ Dpσ−1(1)×
· · · × Dpσ−1(n) is defined to be

(2.12)
∑

σ (e) = (eσ−1(1), . . . , eσ−1(n))

Givenθ ∈ 4n(M), it is easy to see that the functionϕθ · T̃n(M)→ R satisfies
the following properties with (γ , e) ∈ T̃p1,...,pn M anda ∈ R1.

(2.13) ϕθ (γi̇ a, e) = ϕθ (ai̇ γ , e) = aϕθ (γ , e) (1≤ i ≤ n)



P1: VENDOR/GDP/LOV/GAY P2: FTK/FOM/ QC: GCQ

International Journal of Theoretical Physics [ijtp] PP131-301587 May 18, 2001 11:43 Style file version Nov. 19th, 1999

Synthetic Braided Geometry II 1373

(2.14) ϕθ (γ , ei̇ a) = ϕθ (γ , ai̇ e) = aϕθ (γ , e) (1≤ i ≤ n)
(2.15) ϕθ (γ , e) = −δpi ,pi+1δqi ,qi+1ϕθ (6(i ,i+1)(γ ),6(i ,i+1)(e)) (1≤ i ≤ n− 1)

Now we have the following converse.

Proposition 2.2. If a functionϕ from T̃nM to R abides by conditions(2.13)–
(2.15), then there exists uniqueθ ∈ 4n(M ) such thatϕ = ϕθ .

Proof: By the same token as in Lavendhomme (1996, Section 4.2, Proposition 2).
¤

Givenθ ∈ 4n(M ), we defineψθ to be the function from̃Tn+1(M ) toR such
that for any (γ , e) ∈ T̃p1,...,pn+1 M with e= (e1, . . . , en+1),

(2.16) ψθ (γ , e) = 6n+1
i=1 (−1)iαi (θ (γ i

0)− θ (γ i
ei

))e1 . . . êi . . .en+1

whereαi = (Πn+1
j=i+1δ

pi ,p j )(Πi−1
k=1δ

pk,pi ).

Proposition 2.3. The above functionψθ : T̃n+1M → R satisfies conditions
(2.13)–(2.15).

Proof: By the same token as in Lavendhomme (1996, Section 4.2, Proposition 3).
¤

We denote bydθ the element of4n+1(M ) such thatϕdθ = ψθ . Its existence
and uniqueness is guaranteed by Propositions 2.2 and 2.3. It is called theexterior
C-derivativeof θ . Now we have a family{d : 4n(M )→4n+1(M )}n∈N of map-
pings, for which we have the following:

Proposition 2.4. d◦ d = 0.

Proof: By the same token as in Lavendhomme (1996, Section 4.2, Proposition 1).
¤

Proposition 2.5. If a differential n-C-preformθ on M isC-braided, then so is
dθ .

Proof: By the same token as in Nishimura (1999, Proposition 2.5 and Lemmas 2.6
and 2.7; 2000a, Lemmas 2.3 and 2.4).¤

Therefore the family{d : 4n(M )→ 4n+1(M )}n∈N of mappings naturally
gives rise to a family{d : 4n(M )→ 4n+1(M )}n∈N of mappings.
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If ϕ : M → N a map ofC-microlinear space andη : F → N is aC-vector
bundle, then the notion of a (C-braided) differentialn-C-preform onM and that of
differentialn-C-form onM discussed earlier can be generalized easily to that of a
(C-braided) differentialn-C-preform on M with values inη relative toϕ and that of
adifferential n-form on M with values inη relative toϕ, as in Lavendhomme (1996,
Section 5.3.1). We denote by4n(M

ϕ→ N; η),4∼
n(M

ϕ→ N; η), and∼4n(M
ϕ→ N; η)

the totality of differentialn-C-prefroms onM with values inη relative toϕ, that
of C-braided differentialn-C-preforms onM with values inη relative toϕ, and
that of differentialn-C-forms onM with values inη relative toϕ, respectively.
A direct generalization of Proposition 2.1 enables us to identity4∼

n(M
ϕ→ N; η)

and∼4n(M
ϕ→ N; η), which we will often denote by4n(M

ϕ→ N; η). If N = M and
ϕ is the identity map idM of M , then4n(M

ϕ→ N; η) is denoted also by4n(M ; η).
If η is furthermore a trivial bundleM × R→ M , then4n(M ; η) degenerates into
4n(M).

3. BRAIDED CONNECTIONS

Let ζ : E→ M be aC-vector bundle. AC-connectionon ζ is a mapping
∇ : M D(1,...,k) ×M E→ ED(1,...,k) such that for any (t,v) ∈ M D(1,...,k) ×M E, any
a ∈ R and anyd ∈ D(1, . . . , k) we have that

(3.1) ∇(t, v)(0)= v
(3.2) ∇(t a, v)(d) = ∇(t, v)(ad)
(3.3) ∇(t, va)(d) = (∇(t, v)(d))a
(3.4) The mappingu ∈ Et(0) | → ∇(t, u)(d) ∈ Et(d), denoted by p∇(t,d) or p(t,d), is

bijective and preservs grades (i.e., p(t,d)(E
p
t(0)) = Ep

t(d) for anyp ∈ Π). Its
inverse is denoted byq∇(t,d) = q(t,d) : Et,(d) → Et(0). We call p(t,d) theparallel
transportfrom t(0) tot(d) alongt, while q(t,d) is called theparallel transport
from t(d) to t(0) alongt.

If the C-vector bundleζ : E→ M is a trivial bundleM ×N → M , and
if ∇(t, (t(0), x))(d) = (t(d), x) for any t ∈ M D(1,...,k) any x ∈N and anyd ∈
D(1, . . . , k), then theC-connection∇ is calledtrivial .

Given t̄ ∈ ED(1,...,k), we define ¯ω( t̄ ∈ ED(1,...,k) to be

(3.5) ω̄( t̄ = t̄−∇(ζ ◦ t̄, t̄(0))

Sinceω̄(t̄) ∈ V(E), there exist uniqueωp(t̄) ∈ Eζ◦t̄(0)(p ∈ Π) such that

(3.6) ω̄(t̄)(d) = t̄(0)+6p∈Πωp(t̄)dp

for anyd ∈ D(1, . . . , k). We defineω(t̄) to be6p∈Πωp(t̄).
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Proposition 3.1. Given v∈ E and x∈ M with x = ζ (V), the mappinḡt ∈
(ED(1,...,k))V | → ω(t̄) ∈ E satisfies(2.6), so thatω is a differential1-C-form on E
with values inζ relative toζ .

Proof: By (3.2)ω̄ satisfies (2.6), so that for anya ∈ R and anyd ∈ D(1, . . . , k),

(3.7) ω̄(t̄a)(d)

= ω̄(t̄)(ad)

= ω̄(t̄)(6p∈Π6q+r=paqdr )

= t̄(0)+6p∈Πωp(t̄)(6q+r=paqdr )

= t̄(0)+6r∈Π(6p∈Πωp(t̄)ap−r )dr

Therefore

(3.8) ω(t̄a) = 6r∈Π(6p∈Πωp(t̄)ap−r )

= 6p,q∈Πωp(t̄)aq

= ω(t̄)a,

as was claimed. ¤

We say thatω is theC-connectionC-form of ∇.

Proposition 3.2. For anyd ∈ D(1, . . . , k) and anȳt ∈ ED(1,...,k) we have

(3.9) q(ζ◦t̄,d)(t̄(d)) = t̄(0)+6p∈Πωp(t̄)dp

Proof: Consider the mapping

(d, d′) ∈ D(1, . . . , k, 1, . . . , k) | → p(ζ◦t,d)(t̄(0)+6p∈Πωp(t̄)d′p) ∈ E,

which coincides with∇(ζ ◦ t̄, t̄ (0)) on the firstD(1, . . . , k) and withω̄(t̄) on the
secondD(1, . . . , k). Therefore the mapping

d ∈ D(1, . . . , k) | → p(ξ◦t,d)(t̄(0)+6p∈Πωp(t̄)dp) ∈ E

coincides with̄t, which implies the desired proposition.¤

Now suppose that we are given a mappingϕ : M → N of C-microlinear
spaces and aC-vector bundleη : F → N endowed with aC-connection∇̄ , which
shall be fixed throughout the rest of this section. Braided exterior differential
calculus discussed in the previous section (particularly Propositions 2.2 and 2.3)
can be generalized easily to braided covariant exterior differential calculus.
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Proposition 3.3. Given a differential n-C-formθ on M with values inη relative
to ϕ, there exists a unique differential(n+ 1)-C- form on M with values inη
relative toϕ, to be denoted byd∇̄θ , such that for any(p1, . . . , pn+1) ∈ Πn+1 and
any(γ , e) ∈ T̃p1,...,pn+1 M with e= (e1, . . . , en+1), we have

(3.10) d∇̄θ (γ )e1 . . .en+1

= 6n+1
i=1 (−1)iαi

(
θ
(
γ i

0

)− q∇̄(ϕ◦γi ,ei )

(
θ
(
γ i

ei

)))
e1 . . .ei . . .en+1,

whereγi is the tangentC-vector to M assigningγ (0, . . . , 0,d, 0, . . . , 0) (d is
positioned at the i th slot) to each d∈ Dpi andαi = (nn+1

j=i+1δ
pi ,p j )(ni−1

k=1δ
pk,pi ).

Proof: By a direct generalization of Proposition 2.3.¤

We calld∇̄θ thecovariant exteriorC-derivativeof θ .

4. INDUCED BRAIDED CONNECTIONS I

Let us define some inducedC-connections. Letζ : E→ M andη : F → M
be C-vector bundles over the same base spaceM with C-connection∇ and∇′
bestowed upon them. First we define an inducedC-connection∇ ⊕ ∇′ on the
Whitney sumζ ⊕ η as follows:

(4.1) (∇ ⊕ ∇′)(t, vζ ⊕ vη)(d) = ∇(t, vζ )(d)⊕∇′(t, vη)(d) for anyt ∈ M D(1,...,k),
anyvζ ∈ Et(0), anyvη ∈ Ft(0) an anyd ∈ D(1, . . . , k).

Proposition 4.1. For any t̄ζ ∈ ED(1,...,k) and anyt̄η ∈ F D(1,...,k) with ζ D(1,...,k)

(t̄ζ ) = ηD(1,...,k)(t̄η), we have

(4.2) ωζ⊕η(t̄ζ ⊕ t̄η) = ωζ (t̄ζ )⊕ ωη(t̄η),
whereωζ⊕η, ωζ , andωη denote theC-connectionC-forms of∇ ⊕ ∇′, ∇ and,∇′,
respectively.

Proof: Let t = ζ D(1,...,k)(t̄ζ ) = ηD(1,...,k)(t̄η). For anyd ∈ D(1, . . . , k), we have,
by Proposition 3.2, that

(4.3) q∇⊕∇
′

(t,d) (t̄ζ (d)⊕ t̄η(d))

= (t̄ζ (0)+6p∈Πωζ,p(t̄ζ )dp)⊕ (t̄η(0)+∑p∈Π ωη,p(t̄ζ )dp)

= (t̄ζ (0)⊕ t̄η(0))+6p∈Π(ωζ,p(t̄ζ )⊕ ωη,p(t̄η))dp

Therefore the desired proposition obtains by Proposition 3.2 again.¤

Corollary 4.2. For anyµ ∈ Secζ and anyν ∈ Secη, we have
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(4.4) d∇⊕∇′ (µ⊕ ν) = d∇µ⊕ d∇′ν

We now difine an inducedC-connection̂∇ onπL (ζ,η) as follows:

(4.5) ∇̂(t, v̂)(d)(v) = p∇(t,d)(v̂(q∇(t,d)(v)))

for anyt ∈ M D(1,...,k), anyd ∈ D(1, . . . , k), any

v̂ ∈ L (ζ, η)t(0) and anyv ∈ Et(0).

Proposition 4.3. For any t̂ ∈ L (ζ, η)D(1,...,k) and any t̄ ∈ ED(1,...,k) with
(πL (ζ,η))D(1,...,k)(t̂) = ζ D(1,...,k)(t̄), we have

(4.6) ωη(t̂(t̄)) = 6p,q,r∈Πδp,rδq,pδp,q(ω̂p(t̂))q(t̄(0)r )+ t̂(0)(ωζ (t̄)),

whereω̂ denote theC-connection form of̂∇, and t̂(t̄) denotes the mappingd ∈
D(1, . . . , k) |→ t̂(d)(t̄(d)). In particular, if the braiding9 happens to be symmet-
ric, then we have

(4.7) ωη(t̂(t̄)) = 6p,r∈Πδp,r ω̂p(t̂)(t̄(0)r )+ t̂(0)(ωζ (t̄)).

Proof: Let t = (πL (ζ,η))D(1,...,k)(t̂) = ζ D(1,...,k)(t̄). For anyd ∈ D(1, . . . , k), we
have, by Proposition 3.2, that

(4.8) q∇
′

(t,d)(t̂(d)(t̄(d)))

= q∇̂(t,d)(t̂(d))(q∇(t,d)(t̄(d)))

= (t̂(0)+6p∈Πω̂p(t̂)dp)(t̄(0)+6p∈Πωζ,p(t̄)dp)

= (t̂(0)+6p,q∈Πδq,pdp(ω̂p(t̂))q)(t̄(0)+6p∈Πωζ,p(t̄)dp)

= t̂(0)(̄t(0))+6p,q∈Πδq,pdp(ω̂p(t̂))q(t̄(0))+6p∈Π t̂(0)(ωζ,p(t̄))dp

= t̂(0)(̄t(0))+6p,q∈Πδq,pdp(ω̂p(t̂))q(6r∈Π t̄(0)r )+6p∈Π t̂(0)(ωζ,p(t̄))dp

= t̂(0)(̄t(0))+6p,q,r∈Πδq,pδp,q+r (ω̂p(t̂))q(t̄(0)r )dp +6p∈Π t̂(0)(ωζ,p(t̄))dp

= t̂(0)(̄t(0))+6p∈Π{6q,r∈Πδp,rδq,pδp,q(ω̂p(t̂))q(t̄(0)r )+ t̂(0)(ωζ,p(t̄))}dp

Therefore the desired proposition obtains by Proposition 3.2 again.¤

Corollary 4.4. For anyµ ∈ Secζ and anyι ∈ SecπL (ζ,η), we have

(4.9) d∇′ (ι(µ)) = 6p,q,r ,∈Πδp,rδq,pδp,q(dp
∇̂ ι)q(µr )+ ι(d∇µ)

In particular, if the braiding9 is symmetric, then we have

(4.10) d∇′ (ι(µ)) = 6p,r ,∈Πδp,r (dp
∇̂ ι)(µr )+ ι(d∇µ)
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If η is the trivial bundleM × R→ M and theC-connection∇′ is trivial,
then theC-connection̂∇ is usually denoted by∇∗. If ζ = η and∇ = ∇′, then the
C-connection̂∇ is usually denoted bỹ∇.

5. CURVATURE

Letζ : E→ M be aC-vector bundle endowed with aC-connection∇, which
shall be fixed throughout this section. The principal objective of this section is to
introduce a sort of curvature abiding by the so-called second Bianchi identity. First
let us introduce a preliminary version of curavature somewhat disobedient to the
second Bianchi identity, from which our desired curvature naturally follows. The
C-connectionC-formω is surely an element of41(E

ζ→ M ; ζ ), and its covariant
exteriorC-derivatived∇ω ∈ 42(E

ζ→ M ; ζ ) is called thecurvatureC-form of the
first kindand denoted byÄ, for which we have

Proposition 5.1. For any γ̄ ∈ ED(p)×D(q) and any(d1, d2) ∈ D(p)× D(q) with
γ = ζ ◦ γ̄ , t1 = γ (·, 0), t2 = γ (d1, ·), t3 = γ (0, ·) and t4 = γ (·, d2), we have

(5.1) (δp,q)−1Ä(γ̄ )d1d2

= q(t1,d1) ◦ q(t2,d2)(γ̄ (d1, d2))− q(t3,d2) ◦ q(t4,d1)(γ̄ (d1, d2))

Proof: By the very definition of covariant exteriorC-differentiation, we have

(5.2) (δp,q)−1Ä(γ̄ )d1d2

= ω(γ̄ (·, 0))d1+ q(t1,d1)(ω(γ̄ (d1, ·)))d2

− q(t3,d2)(ω(γ̄ (·, d2)))d1− ω(γ̄ (0, ·))d2

By Proposition 3.2 we have

(5.3) ω(γ̄ (·, 0))d1 = q(t1,d1)(γ̄ (d1, 0))− γ̄ (0, 0)

(5.4) q(t1,d1)(ω(γ̄ (d1, ·)))d2

= q(t1,d1){q(t2,d2)(γ̄ (d1, d2))− γ̄ (d1, 0)}
= q(t1,d1) ◦ q(t2,d2)(γ̄ (d1, d2))− q(t1,d1)(γ̄ (d1, 0))

(5.5) q(t3,d2)(ω(γ̄ (·, d2)))d1

= q(t3,d2){q(t4,d1)(γ̄ (d1, d2))− γ̄ (0, d2)}
= q(t3,d2) ◦ q(t4,d1)(γ̄ (d1, d2))− q(t3,d2)(γ̄ (0, d2))

(5.6) ω(γ̄ (0, ·))d2 = q(t3,d2)(γ̄ (0, d2))− γ̄ (0, 0)

Therefore the desired conclusion follows.¤
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Now we introduce another curvatureC-form, to be called thecurvatureC-
form of the second kindand to be denoted bỹÄ, as follows:

(5.7) Ä̃(γ̄ ) = Ä(h(γ̄ )) for anyC-microsquare ¯γ on E, whereh(γ̄ ) denotes the
horizontal componentof γ̄ (cf. Moerdijk and Reyes, 1991, Chap.V.
Section 6) in the sense that for any (d1, d2) ∈ D(1, . . . , k)2,

(5.8) h(γ̄ )(d1, d2) = p(γ (d1,·),d2) ◦ p(γ (·,0),d1)(γ̄ (0, 0))

with γ = ζ ◦ γ̄ . For the curvatureC-form of the second kind, we have

Proposition 5.2. Using the same notation as in Proposition5.1,we have

(5.9) (δp,q)−1Ä̃(γ̄ )d1d2 = γ̄ (0, 0)− q(t3,d2) ◦ q(t4,d1) ◦ p(t2,d2) ◦ p(t1,d1)(γ̄ (0, 0)),

so thatÄ̃(γ̄ ) depends only onγ = ζ ◦ γ̄ and v= γ̄ (0, 0), which enables us to
regardÄ̃ as a function fromT2M to L (ζ ) in the sense that̃Ä(γ )(v) = Ä̃(γ̄ ).

Proof: Simply puth(γ̄ ) in place of ¯γ in Proposition 5.1. ¤

We now reckonÄ̃ as a function fromM D(1,...,k)2
to L (ζ ) in the canonical

way, for which we have

Proposition 5.3. The functionÄ̃ : M D(1,...,k)2 → L (ζ ) is a differential2-C-form
on M with values inπL (ζ ). I.e.,Ä̃ ∈ 42(M ;πL (ζ )).

Proof: We define a functionh : M D(1,...,k)2×
M

E→ ED(1,...,k)2
as follows:

(5.10) h(γ , v)(d1, d2) = p(γ (d1,·),d2) ◦ p(γ (·,0),d1)(v) for any (γ , v) ∈ M D(1,...,k)2×
M

E and any (d1, d2) ∈ D(1, . . . , k)2.

Then it is easy to see that

(5.11) h(γi̇ a, v) = h(γ , v)i̇ a for anya ∈ R(i = 1, 2).

SinceÄ̃(γ )(v) = Ä(b(γ , v)) andÄ satisfies (2.6),̃Ä also satisfies (2.6). Now we
use the same notation as in Proposition 5.1 and 5.2. To show thatÄ̃ satisfies (2.5),
we Letv0 = v and definev1 andv2 in order as follows:

(5.12) v1 = q(t3,d2) ◦ q(t4,d1) ◦ p(t2,d2) ◦ p(t1,d1)(v0)
(5.13) v2 = q(t1,d1) ◦ q(t2,d2) ◦ p(t4,d1) ◦ p(t3,d2)(v1)

On the one hand it follows directly from (5.12) and (5.13) that

(5.14) v2 = v0

On the other hand we can calculatev1 and v2 in order by making use of
Proposition 5.2:
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(5.15) v1 = v0− (δp,q)−1Ä̃(γ )(v0)d1d2

(5.16) v2 = v1− (δq,p)−1Ä̃(6(γ ))(v1)d2d1

= v0− (δp,q)−1Ä̃(γ )(v0)d1d2

− (δq,p)−1Ä̃(6(γ ))(v0− (δp,q)−1Ä̃(γ )(v0)d1d2)d2d1 [(5.15)]

= v0− (δp,q)−1Ä̃(γ )(v0)d1d2− (δq,p)−1Ä̃(6(γ ))(v0)d2d1

= v0− Ä̃(γ )(v0)d2d1− (δq,p)−1Ä̃(6(γ ))(v0)d2d1

[sinced1d2 = δp,qd2d1]

It follows from (5.14) and (5.16) that

(5.17) δq,pÄ̃(γ )(v0)+ Ä̃(6(γ ))(v0) = 0,

which means that̃Ä satisfies (2.5). ¤

The above proof is a prototype of the proof of Theorem 5.5 to come.
Now we give a braided, cubical version of Kock’s simplicial and combinatorial

Bianchi identity (Kock, 1996, Theorem 2).

Theorem 5.4. Letγ ∈ M D(p)×D(q)×D(r ).Let (d1, d2, d3) ∈ D(p)× D(q)× D(r ).
We denote pointsγ (0, 0, 0),γ (d1, 0, 0),γ (0, d2, 0),γ (0, 0,d3), γ (d1, d2, 0),
γ (d1, 0,d3), γ (0, d2, d3), and γ (d1, d2, d3) by O, A, B, C, D, E, F, and G, re-
spectively. These eight points are depicted figuratively as the eight vertices of a
cube:

A D

GE
B

F

O

C

Then we have

(5.18) PAO ◦ PDA ◦ PGD ◦ RGFBD◦ RGECF◦ RGDAE ◦ PDG ◦ PAD ◦ POA ◦ ROCEA ◦
ROBFC ◦ ROADB = idO,

where

(5.19) for any adjacent verticesX, Y of the cube, PXY denotes the parallel
transport fromX to Y along the line connectingX andY (e.g., POA and
PAO denotep(γ ( · ,0),d1) andq(γ ( · ,0),d1), respectively),
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(5.20) for any four verticesX, Y, Z, W of the cube rounding one of the six facial
squares of the cube, RXYZW denotes PWX ◦ PZW ◦ PYZ ◦ PXY (e.g., ROADB

denotesq(γ (0,·, 0),d2) ◦ q(γ ( ·, d2,O),d1)◦ P(γ (d1,·,O),d2) ◦ P(γ ( · ,O,O),d1)) and
(5.21) idO is the identity transfotmation of EO.

Proof: Write over (5.18) exclusively in terms ofPXY ’s, and write off all consec-
tive PXY ◦ PYX ’s ¤

The above theorem gives rise to the following form of the second Bianchi
identity in our braided context.

Theorem 5.5. We have

(5.22) d∇̃Ä̃ = 0,

whered∇̃ is the covariant exteriorC-differentiation with respect to the induced
C-connection∇̃ onπL (ξ ), and recall thatÄ̃ ∈ 42(M ;πL (ξ )), as was explained in
Proposition5.3.

Proof: The proof is carried out by the same method as in Proposition 5.3. Let
γ , d1, d2, d3, O, A, B, C, D, E, F, and G be as in Theorem 5.4. Givenv0∈ Eγ (0, 0, 0),
we definevi ∈ Eγ (0, 0, 0) (i = 1, 2, 3, 4, 5, 6) in order as follows:

(5.23) v1 = ROADB(v0)
(5.24) v2 = ROBFC(v1)
(5.25) v3 = ROCEA(v2)
(5.26) v4 = PAO ◦ PDA ◦ PGD ◦ RGDAE ◦ PDG ◦ PAD ◦ POA(v3)

= PAO ◦ RAEGD ◦ POA(v3)
(5.27) v5 = PAO ◦ PDA ◦ PGD ◦ RGECF◦ PDG ◦ PAD ◦ POA(v4)

= PAO ◦ RAEGD ◦ PEA ◦ RECFG◦ PAE ◦ RADGE ◦ POA(v4)
= PAO ◦ PEA ◦ REGDA ◦ RECFG◦ READG ◦ PAE ◦ POA(v4)
= ROCEA ◦ PCO ◦ PEC ◦ REGDA ◦ RECFG◦ READG ◦ PCE ◦ POC◦

ROAEC(v4)
= ROCEA ◦ PCO ◦ PEC ◦ REGDA ◦ PCE ◦ RCFGE◦ PEC ◦ READG ◦ PCE ◦

POC ◦ ROAEC(v4)
(5.28) v6 = PAO ◦ PDA ◦ PGD ◦ RGFBD ◦ PDG ◦ PAD ◦ POA(v5)

= PAO ◦ PDA ◦ RDGFB ◦ PAD ◦ POA(v5)
= ROBDA ◦ PBO ◦ RBDGF ◦ POB ◦ ROADB(v5)

Now we calculatevi (i = 1, . . . , 6) in order. It follows directly from Proposition
5.2 that

(5.29) v1 = v0− (δp,q)−1Ä̃(γ (·, ·, 0))(v0)d1d2
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The calculations ofv2 and v3 are similar, so we present details of the former
calculation but simply register the result of the latter calculation, safely leaving its
details to the reader.

(5.30) v2 = v1− (δq,r )−1Ä̃(γ (0, ·, ·)) (v1)d2d3 [Proposition 5.2]

= v0− (δp,q)−1Ä̃(γ (·, ·, 0)) (v0)d1d2− (δq,r )−1Ä̃(γ (0, ·, ·))
× (v0− δp,qÄ̃(γ (·, ·, 0)) (v0)d1d2)d2d3 [(5.29)]

= v0− (δp,q)−1Ä̃(γ (·, ·, 0)) (v0)d1d2− (δq,r )−1Ä̃(γ (0, ·, ·)) (v0)d2d3

(5.31) v3 = v0− (δp,q)−1Ä̃(γ (·, ·, 0)) (v0)d1d2− (δq,r )−1Ä̃(γ (0, ·, ·)) (v0)d2d3

+ (δp,r )−1Ä̃(γ (·, 0, ·)) (v0)d1d3

The three calculations ofv4, v5, andv6 are similar, so we present their details only
in case of the first, leaving details of the other two calculations to the reader.

(5.32) v4 = PAO ◦ RAEGD ◦ POA(v0− (δp,q)−1Ä̃(γ (·, ·, 0)) (v0)d1d2

− (δq,r )−1Ä̃(γ (0, ·, ·)) (v0)d2d3

+ (δp,r )−1Ä̃(γ (·, 0, ·)) (v0)d1d3) [(5.31)]

= PAO ◦ RAEGD(POA(v0)− (δp,q)−1POA(Ä̃(γ (·, ·, 0)) (v0))d1d2

− (δq,r )−1POA(Ä̃(γ (0, ·, ·)) (v0))d2d3

+ (δp,r )−1POA(Ä̃(γ (·, 0, ·)) (v0))d1d3)

= PAO(POA(v0)− (δp,q, )−1POA(Ä̃(γ (·, ·, 0)) (v0))d1d2

− (δq,r )−1POA(Ä̃(γ (0, ·, ·)) (v0))d2d3

+ (δp,r )−1POA(Ä̃(γ (·, 0, ·)) (v0))d1d3

+ (δq,r )−1Ä̃(γ (d1, ·, ·)) (POA(v0)

− (δq,p)−1POA(Ä̃(γ (·, ·, 0)) (v0))d1d2

− (δr ,q)−1POA(Ä̃(γ (0, ·, ·)) (v0))d2d3

+ (δr ,p)−1POA(Ä̃(γ (·, 0, ·)) (v0)))d1d3)d2d3

[Propositions 5.2 and 5.3]

= v0− (δq,p)−1Ä̃(γ (·, ·, 0)) (v0))d1d2

− (δr ,q)−1Ä̃(γ (0, ·, ·)) (v0)d2d3+ (δr ,p)−1Ä̃(γ (·, 0, ·)) (v0)d1d3

+ (δq,r )−1PAO(Ä̃(γ (d1, ·, ·)) (POA(v0)))d2d3

(5.33) v5 = v0− (δp,q)−1Ä̃(γ (·, ·, 0)) (v0)d1d2− (δq,r )−1Ä̃(γ (0, ·, ·)) (v0)d2d3

+ (δp,r )−1Ä̃(γ (·, 0, ·)) (v0))d1d3

+ (δq,r )−1PAO(Ä̃(γ (d1, ·, ·)) (POA(v0)))d2d3

+ (δp,q)−1PCO(Ä̃(γ (·, ·, d3)) (POC(v0))d1d2



P1: VENDOR/GDP/LOV/GAY P2: FTK/FOM/ QC: GCQ

International Journal of Theoretical Physics [ijtp] PP131-301587 May 18, 2001 11:43 Style file version Nov. 19th, 1999

Synthetic Braided Geometry II 1383

(5.34) v6 = v0− (δp,q)−1Ä̃(γ (·, ·, 0)) (v0))d1d2

− (δq,r )−1Ä̃(γ (0, ·, ·)) (v0)d2d3

+ (δp,r )−1Ä̃(γ (·, 0, ·)) (v0)d1d3

+ (δq,r )−1PAO(Ä̃(γ (d1, ·, ·)) (POA(v0)))d2d3

+ (δp,q)−1PCO(Ä̃(γ (·, ·, d3)) (POC(v0)))d1d2

− (δp,r )−1PBO(Ä̃(γ (·, d2, ·)) (POB(v0)))d1d3

It should be the case by Theorem 5.4 thatv6 = v0. Therefore

(5.35) (δp,q)−1Ä̃(γ (·, ·, 0)) (v0)d1d2+ (δq,r )−1Ä̃(γ (0, ·, ·)) (v0)d2d3

− (δp,r )−1Ä̃(γ (·, 0, ·)) (v0)d1d3

− (δq,r )−1PAO(Ä̃(γ (d1, ·, ·)) (POA(v0)))d2d3

− (δp,q)−1PCO(Ä̃(γ (·, ·, d3,)) (POC(v0)))d1d2

+ (δp,r )−1PBO(Ä̃(γ (·, d2, ·)) (POB(v0))))d1d3 = 0

By multiplying δp,q δp,r δq,r upon (5.35), we have

(5.36) δp,rδq,r Ä̃(γ (·, ·, 0)) (v0)d1d2+ δp,qδp,r Ä̃(γ (0, ·, ·)) (v0)d2d3

− δp,qδq,r Ä̃(γ (·, 0, ·)) (v0)d1d3

− δp,qδp,r PAO(Ä̃(γ (d1, ·, ·)) (POA(v0)))d2d3

− δp,rδq,r PCO(Ä̃(γ (·, ·, d3)) (POC(v0)))d1d2

+ δp,qδq,r PBO(Ä̃(γ (·, d2, ·)) (POB(v0))))d1d3 = 0

Sincev0 ∈ Eγ (0,0,0) was chosen arbitrarily, the proof is complete.¤

6. INDUCED BRAIDED CONNECTIONS II

We calculate the curvature of the second kind of the inducedC-connections
dealt with in Section 4. Letζ : E→ M and η : F → M be C-vector bundles
over the same base spaceM embellished withC-connections∇ and∇′, as in that
section.

Proposition 6.1. For anyγ ∈ M D(1,...,k)2
we have

(6.1) Ä̃ζ⊕η(γ ) = Ä̃ζ (γ )⊕ Ä̃η(γ ),

whereÄ̃ζ⊕η, Ä̃ζ , and Ä̃η denote the curvature forms of the second kind ofC-
connections∇ ⊕ ∇′, ∇, and∇′, respectively.

Proof: Let v ⊕ v′ ∈ (E ⊕ F)γ (0,0). We assume thatγ ∈ M D(p)×D(q). Let d1 ∈
D(p) andd2 ∈ D(q). Lett1 = γ (·, 0), t2 = γ (d1, ·), t3 = γ (0, ·) andt4 = γ (·, d2).
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By Proposition 5.2, we have

(6.2) (δq,p)−1Ä̃ζ⊕η(γ )(v ⊕ v′)d1d2

= (v ⊕ v′)− q∇⊕∇
′

(t3,d2) ◦ q∇⊕∇
′

(t4,d1) ◦ p∇⊕∇
′

(t2,d2) ◦ p∇⊕∇
′

(t1,d1)(v ⊕ v′)

= {v − q∇(t3,d2) ◦ q∇(t4,d1) ◦ p∇(t2,d2) ◦ p∇(t1,d1)(v)
}

⊕ {v′ − q∇
′

(t3,d2) ◦ q∇
′

(t4,d1) ◦ p∇
′

(t2,d2) ◦ p∇
′

(t1,d1)(v
′)
}

= (δq,p)−1Ä̃ζ (γ )(v)d1d2⊕ (δq,p)−1Ä̃η(γ ′)(v′)d1d2

= (δq,p)−1{Ä̃ζ (γ )(v)⊕ Ä̃η(γ ′)(v′)}d1d2

Therefore the desired proposition obtains.¤

Proposition 6.2. Letγ ∈ M D(p)×D(q) andv̂ ∈ L (ζ, η)γ (0,0). Then we have

(6.3) ˆ̃Ä (γ )(v̂) = −v̂ ◦ Ä̃ζ (γ )+6r ,s∈Π δ0,p+q δp+q,r+s(Ä̃η(γ ))r ◦ v̂s

where ˆ̃Ä, Ä̃ζ , and Ä̃η denote the curvature forms of the second kind ofC-
connections∇̂, ∇, and∇′, respectively. In particular, if the braiding9 happens
to be symmetric, then we have

(6.4) ˆ̃Ä(γ )(v̂) = −v̂ ◦ Ä̃ζ (γ )+6s∈Πδp+q,sÄ̃η(γ ) ◦ v̂s

Proof: Let d1 ∈ D(p) andd2 ∈ D(q). By Proposition 5.2 we have

(6.5) (δq,p)−1 ˆ̃Ä(γ )(v̂)d1d2

= v̂ − q∇̂(t3,d2) ◦ q∇̂(t4,d1) ◦ p∇̂(t2,d2) ◦ p∇̂(t1,d1)(v̂)

= v̂ − q∇(t3,d2) ◦ q∇(t4,d1) ◦ p∇(t2,d2) ◦ p∇(t1,d1) ◦ v̂◦
q∇(t1,d1) ◦ q∇(t2,d2) ◦ p∇(t4,d1) ◦ p∇(t3,d2)

= v̂ − {idFγ (0,0)− (δq,p)−1Ä̃η(γ )d1d2
}◦ v̂ ◦ idEγ (0,0)+ (δq,p)−1Ä̃ζ (γ)d1d2

}
= v̂ − {idFγ (0,0) − (δq,p)−160∈Πδr ,p+qd1d2(Ä̃η(γ ))r

} ◦ {6s∈Πv̂s}◦
{idEγ (0,0) + (δq,p)−1Ä̃ζ (γ )d1d2}

= −(δq,p)−1v̂ ◦ Ä̃ζ (γ )d1d2

+ (δq,p)−16r,s∈Πδ0,p+qδp+q,r+s(Ä̃η(γ ))r ◦ v̂sd1d2

= (δq,p)−1{−v̂ ◦ Ä̃ζ (γ )+6r ,s∈Πδr ,p+q δp+q,r+s(Ä̃η(γ ))r ◦ v̂s}d1d2

Therefore the desired proposition obtains.¤
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