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Braided geometry is a natural generalization of supergeometry and is intimately con-
nected with noncommutative geometry. Synthetic differential geometry is a peppy dis-
sident in the stale regime of orthodox differential geometry, just as Grothendieck’s
category-theoretic revolution in algebraic geometry was in the middle of the 20th cen-
tury. Our previous paper [Nishimura (1998) International Journal of Theoretical Physics,
37, 2833-2849] was a gambit of our ambitious plan to approach braided geometry from
a synthetic viewpoint and to concoct what is supposedly to be csylethetic braided
geometry As its sequel this paper is intended to give a synthetic treatment of braided
connections, in which the second Bianchi identity is established. Considerations are
confined to the case that the braided monoidal category at issue is a category of vector
spaces graded by a finite Abelian group withrittnsymmetridraiding being given

by phase factors. Thus the present paper encompasses physical systems amenable to
anyonicstatistics.

0. INTRODUCTION

Synthetic differential geometiy the vanguard of modern differential geom-
etry, in which nilpotent infinitesimals are not only abundantly available as in the
age of Riemann, Lie and Cartan, but also coherently organized with mathemat-
ical rigor. Synthetic differential geometry was pioneered by Lawvere, a famous
category-theorist, in the middle of the 1960’s, while Grothendieck revolutionized
algebraic geometry by exploiting ideas of category theory (e.g., representable func-
tors). Although Grothendieck’s category-theoretic revolution in algebraic geom-
etry during the middle of the 20th century is well appreciated among contemporary
algebraic geometers, Lawvere’s corresponding one in differential geometry has
not received more than studied indifference from orthodox differential geometers.
The so-called tensor analysis on infinitesimal entities (e.g., vector fields) in or-
thodox differential geometry is often stodgy and factitious, concealing the truly
infinitesimal nature of infinitesimal considerations under a topsy-turvy of lengthy
calculations in a dull drone. Synthetic differential geometry enables us to endow
differential geometry with an infinitesimal horizon relatively independent of local
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and global ones. The standard notion of smooth manifold in orthodox differential
geometry is not susceptible of any reasonable or fruitful generalization to non-
commutative or braided geometry, while the central notion of microlinear space
in synthetic differential geometry is. For good textbooks on synthetic differential
geometry, the reader is referred to Lavendhomme (1996) (devoted mainly to a con-
sistently axiomatic presentation of synthetic differential geometry) and Moerdijk
and Reyes (1991) (devoted to model theory of synthetic differential geometry)
as well as to Kock’s bible of the field (Kock, 1981). We assume the reader to be
familiar with Lavendhomme (1996) up to Chapter 5.

Supergeometrgnables us to deal with bosons and fermions on an equal
footing by intermingling them. It is expected to play a central role in any possible
unification of relativity and quantum theory. Supergeometry lies at the entrance to
noncommutative geometry in the sense that the ring of real supernumbers is not
commutative but graded-commutative. For good textbooks on supergeometry the
reader is referred to Bartoet al. (1991), Leites (1980), and Manin (1988). We
have approached supergeometry from a synthetic viewpoint in Nishimura (1998a,
1999, 2000a,c). In particular, a synthetic treatment of superconnections was given
in Nishimura (2000a).

Braided geometrys an elegant and far-reaching generalization of superge-
ometry, in which the category of vector spaces is replaced by a braided monoidal
category. It is pioneered and championed by Majid (1995a,b), Marcinek (1994),
and others. The standard gadget for transmogrifying braided geometry into non-
commutative geometry is bosonization, while the standard device for translating
noncommutative geometry into braided geometry is transmutation. If the braiding
is symmetric, braided geometry lies in the very periphery of supergeometry so
that it is not truely braided. We will consider a (nonsymmetric) braided monoidal
category of vector spaces graded by a finite Abelian group whose braiding is given
by a phase factor. Our considerations do not only encompass color geometry but
also anyonic geometry. For anyonic geometry the reader is referred to Majid (1993,
1994, 1997).

As a sequel to Nishimura (1998b) this paper gives a synthetic treatment of
braided connections by generalizing our synthetic treatment of superconnections
in Nishimura (2000a). Basic definitions and basic properties will be presented in
Section 3. Section 5 is devoted to a combinatorial treatment of the so-called second
Bianchi identity. Sections 4 and 6 are devoted to induced braided connections. We
have gathered some preliminaries in Section 1. We deal in haste with braided
exterior differential calculus in Section 2.

As is usual in synthetic differential geometry, the reader should presume
throughout the paper that we are working in a (not necessarily Boolean) topos,
so that the excluded middle and Zorn’s lemma have to be avoided. Objects of the
topos go under such aliases as a “space,” a “set,” etc.
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1. PRELIMINARIES
1.1. Basic Braided Algebra

We choose, once and for all, a braided monoidal cate§esy ¢, ®, 1, @, 4,
», W) abiding by the following conditions:

(1.1) <¥’is a subcategory of the category of allinear spaces with a field.

(1.2) ® isthe standard tensor product.elinear spaces.

(2.3) The unit objectl is #, regarded as a-linear space in the standard
manner.

(1.4) The associativity constraidt, the left unit constraint and the right unit
constraint, are the standard ones #flinear spaces.

(1.5) There exists a finite sEI of mutually nonisomorphic objects of includ-

ing the unit object, say,IT = {1, 2, 3, ...k}, such that

(1.5.1) Every objecp in IT is a one-dimensional-linear space.

(1.5.2) The sell is closed unde®), i.e., for any objectp, q in I, there
exists an object in IT such thap ® q is isomorphic tar in the
category ¢ (we will constantly usep, g, r, ... with or without
subscripts as variables ovE).

(1.5.3) Everydirect sum of (possibly infinitely many) copies of objects in
IT as well as all its associated canonical injections and projections
belongs to%, and any object in¢ is a direct sum of copies of
objects inIl.

(1.6) For any morphisnax:U — V in ¥, if « happens to be an isomorphism
of 4-linear spaces, them*:V — U belongs to so that is an isomor-
phism in €.

Note that we have not assumddto be symmetric. As is the custom in
dealing with monoidal categories, we will often proceed as if the monoidal category
(¢ ®,1, , 4, ») were strict, which is justifiable by Theorem XI1.5.3 of Kassel
(1995). We will often writep + g for r isomorphic top ® q in (1.5.2). Theniitis
easy to see that

Proposition 1.1. IIisan abelian monoid with respect to the operatipdefined
above.

Proof: The associativity constrairky o : (P® Q) ®r — p®(qQr) guar-
antees thall is a semigroup. The left unit constrair;)t: 1®p — pandthe
right unit constraint, : p® 1 — p warrants thall is not only a semigroup but
also a monoid. The commutativity of the mondill follows from the braiding
Ypg:P®Q — q®Pp. O
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We choose an arbitrary nonzero elemgnof each one-dimensionatlinear
spacep in IT once and for all. Fop, q in IT there exists a uniqu&” 9 € # such
that

(1.7) Wp,q(Xp ® Xq) = 6P9(Xq ® Xp)

It is easy to see that the numbéPs! do not depend on our particular choice
of {Xp}per-

Proposition 1.2. The numbergP-9 satisfy the following identities:

(1.8) PO+ = gp.agpr
(1.9) sPHar = gPrgar
(1.10) 8Pt =41P =1

Proof: (1.8) and (1.9) follow from the so-called hexagon axiom, which claims
that¥, qer = (idg ® Wp,r) o (Wp,q ® idy) andWpgqr = (Wp,r ® idg) o (idp ® Wg,r)

up to associativity and unit constraints. Sisée = §P1*+1 = §P-1sP.1 by (1.8), it
follows thatsP! = 1. Similary it follows from (1.9) thas*? = 1. O

Since we do not assumdeto be symmetric, it does not follow thét95%9P = 1.
We require that

(1.11) IIis not only an abelian monoid but even an abelian group, so that, if
the braiding¥ is symmetric, the pair(, §) is a signed group in terms of
Marcinek (1991).

Given an objecU in ¥, the direct sum decomposition &f into objects
in IT in (1.5.3) is not unique, but thp-component of Udefined as the direct
sum of the images of all the canonical injections frprimto U with respect to a
particular decomposition & , will soon turn out to be independent of our choice
of a particular decomposition d&f. Therefore we can safely writd? for the
p-component ofJ.

Proposition 1.3. LetI" andI'’ be two direct sum decompositions of U(1n5.3)
Then for anyp in I1, thep-components Yand U, of U with respect td” and T’
coincide.

Proof: The proof uses a gimmick that is familiar in the proof of the well-known
fact of algebra that although a direct sum decomposition of a semisimple module
into simple ones is not unique, its homogeneous component affiliated to a particular
simple module is well defined, for which the reader is referred, e.g., to Wisbauer
(1991, Chapter 4). For any canonical injectiaof p into U in the decomposition

I' and any canonical projectiom of U onto q in the decompositiori™ with
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p # q, 7 ot = 0, for otherwisg andq would be isomorphic in¢” by (1.7). This
means that)? c UP, for anyp in I1. By interchanging the roles 6f andI™ in the
above discussion, we have thaf, c U} for anyp in II. Therefore the desired
conclusion follows. O

Corollary 1.4. U =U!@® ... @ UK, so that each e U can be decomposed
uniquely as u= ug + - - - + U, with u, € UP for anyp in II.

An elementu of U which happens to consist WP for somep in IT is called
pure (of gradep), in which we will denotep by |ul.

The same gadget used in the proof of Proposition 1.3 establishes the
following:

Proposition 1.5. Any morphisme : U — V in ¢ preserves grading (i.e.,
a(UP) C VP for eachp in II.

We now enjoin that the class of morphismsdnbe saturated with respect to
this property in the following sense:

(1.12) For any objectd, V in €, if a homomorphismw : U — V of /-linear
spaces preserves grading (i&(UP) c VP for anyp in II), thena lies
in %.

The notion of an algebra in the braided monoidal categionysually called a
E-algebrag can be defined diagrammatically as in Kassel (1995, Section 111.1). A
C-algebrace7 withits produci ., : o/ ® oo/ — o/ is said to bé-commutative
if w.yoW¥., ., =u~.. Given a-algebrace/ the notions of a lefte-module
and a right co7-module in €, usually called deft co~~E-moduleand aright
oo7-&-module respectively, can be defined diagrammatically as in Majid (1995a,
Section 1.6). Ifce7 happens to b&f-commutative, a leftee/~E-module o#
with its left actionyn : o/ ® o# — o# can naturally be converted into a right
co/-E-module withitsrightaction o W_, ., : o/ ® o/ — o#/,and vice versa, so
that the distinction between “left” and “right” is not essential intheommutative
case. In this case any left7~E-module and, equivalently, any right/-E-module
are naturallyee~bimodules. A left (right, respectively)o~E-module o/ is said
to beE-finite-dimensionaif there exists a finite-dimensionatlinear spacé/ in
¢ such thatee7® V, (V ® o7, respectively) is isomorphic te as left (right,
respectively) co/~E-modules. The notions of a lefte~module algebra and a
right cc#~module algebra i, usually called deft cc7-E-algebraand aright
oo/-E-algebrg respectively, can also be defined diagrammatically as in Majid
(1995a, Section 1.6). Anideal of&algebracc/ is said to be &-idealif it belongs
to %. Other standard notions such as thatlddenomorphism df -algebraghat can
easily be formulated diagrammatically will be used freely. Givéh@mmutative
E-algebrace/ and ance-E-algebra?, Spec., 93 denotes the totality of homo-
morphisms ofce/~-C-algebra from23 into co7.
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Now we choose, once and for allSacommutativeS-algebraR intended to
play a role of real numbers in our braided mathematics. So we must enjoin the
following axiom onR:

(1.13) Ris a-commutative€-algebra.

Another important axiom ofR will be presented in the next subsection.
Given a setZ, the totality of functions fromZ to R is an R-C-algebra with
componentwise operations whoge&eomponent can naturally be identified with
the totality of functions froniZ to RP.

Given right R-E-modules o# and ~/; the totality Hong(o#, /") of
R-homomorphisms frome# to o/ is a leftR-module in the sense that for any
a € R, anyu € o# and anyf € Homg(o#, /"),

(1.14) @f) (u) = af (u).

It is not difficult to see that thep-component Hor&(o//{, o) of
Homg (o, /") is the totality off € Homg(o#, ~/") suchthatf (u)| = |u| + p
for any u € o#. We define Hom(o#, ~1°) to be Hon}(c#, o) & --- @
Hom¥ (o, ~17), which is anR-E-module.

Given a finite sequenqey, ..., pn in II, we can form the tensdg-algebra
T(E1D --- ® pn) of the 4-linear spacep; @ - - - @ pn. The quotientE-algebra
of T(p1 @ --- @ pn) with respect to th&-ideal generated bjx,, xp, — 6P Pixp,
Xp, |11 <1, j =< n}is aC-algebra called th@olynomial C-algebra of variables
Xpys - - - Xp, and is denoted by[Xp,, . .., Xp,]. TheR-C-algebraR ®2 4[Xp,, . . .,
Xp,] is called thepolynomialC-algebra of variables i, ..., Xp, overR or the
polynomialR-$-algebra of variables i, ..., Xp, and is denoted bR [X,,, ...,
Xp,]. TheR-C-algebraR [x,,, . . . Xp,]is characterized by the following universality

property:

Proposition 1.6. TheR-C-algebraR [xp,, ..., Xp,] is €-commutative. For any
€-commutativiR-E-algebracezand any morphismg : pi — oZin ¢(1<i <
n), there exists a unique homomorphianof R-E-algebras fromR[xy,, . . ., Xp,]
to ce7whose restriction t@; ise; (1 <i <n).

1.2. Weil €-Algebras and ¢-Microlinearity

A Weil C-algebrais a €-commutativeR-E-algebra)t which, regarded as
anR-module, is to be written aft = R @ nt with the first component being the
R-E-algebra structure and the second being a finite-dimensional nilpbtieieal
(called the-ideal of augmentation By way of example, the quotief-algebra
of the polynomial&-algebraR[ X4, ..., X,] with respect to thés-ideal generated
by {XiX;|1 <i < n}is a Weil S-algebra and is denoted B¥(pa, . .., pn) with

2 ® denotes the braided tensor product.
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pi = |Xi| (1 <i < n). Given Weil C-algebrasilit; and ¢, with their €-ideals
of augmentatiomt; andnt, respectively, a homomorphism B¢-algebraspy :
M, — M, is said to be daomomorphism of Well-algebrasif it preserves their
C-ideals of augmentation, i.e., #(n1;) C ntp. A finite limit diagram of R-¢-
algebras is said to begmod finite limit diagram of Welt-algebrasif every object
occurring in the diagram is a We§-algebra and every morphism occurring in
the diagram is a homomorphism of Wéitalgebras. The diagram obtained from
a good finite limit diagram of Weil-algebras by taking Spgds called aquasi-
colimit diagram of&-small objects.

The Braided version of the general Kock axiom, calleddgbaeral$-Kock
axiom is as follows:

(1.15) For any Wei-algebra))t, the canonical homomorphisii — RSPe&X)
of R-E-algebras is an isomorphism.

Spaces of the form Spgq?k) for some Weil$-algebralllt are called¢-
infinitesimal spaceer €-small objectsThe E-infinitesimal space corresponding
to Weil €-algebrali(ps, . . ., pn) is denoted bYD(p4, . . ., pn). By Proposition 1.6,
D(p1, - .., pn) is to be identified wit{(dy, ..., dy) | di e RP (1 <i < n), didj =
0(1<i, j <n)}. We will often denoteD(p) by DP.

The C-infinitesimal spaceD(1, ..., k) plays a very important role in our
discussion of tangency. First we note tiAtl, . . ., k) can be identified with the
subset ofR consisting of alld € R such thatd,dy, = 0 for anyp, g  IL. Under
this identification ¢, ..., ds) € D (1, ...K) corresponds ta; + --- + d¢ € R.
What concerns us most abdD({1, .. ., k) is that the spac®(1, ..., k), regarded
as a subset dk, is closed under the left and right actiongRobn itself.

Just as the general Kock axiom paved to the introduction of microlinear
spaces, its braided version invokes the notion @fmicrolinear spacewhich is
by definition a space M abiding by the following condition:

(1.16) For any good finite limit diagram of Weil-algebras with its limiWV, the
diagram obtained by taking Speand then exponentiating ovéM is a
limit diagram with its limit MSPe&W,

The following proposition guarantees that we have a plenty-aficrolinear
spaces.

Proposition 1.7.

(1) RP is a&-microlinear space for anp < II.
(2) The class ofé-microlinear spaces is closed under limits and exponentia-
tion by an arbitrary space.

The above braided version of the general Kock axiom surely subsumes
the following braided version of the Kock-Lawvere axiom to be called the
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©-Kock—Lawverexiom:

(1.17) Foranyfunctiorf : DP — R,there existsunique € R suchthatf (d) =
f(0) + bd for anyd < DP.

The axiom (1.17) is equivglent to the following axiom:

(1.18) For any functionf : DP — R, there exists uniqué’ € R such that
f(d) = f(0)+ db for anyd € DP.

We conclude this subsection by a definition. RAS-module o# is said to
be €-Euclideanif it abides by the following equivalent of (1.17):

(1.19) For any functionf : DP — o, there exists uniqug € o# such that
f(d) = f(0)+ xd for anyd € DP.

1.3. €-Microcubes

A €-microlinear space M shall be chosen arbitrarily ones and for all. Given
(1, ..., pn) € II", apure n&-microcube of typ€ps, ..., pn) ON Mis a function
from DPt x ... x DPn to M. We denote byl P:-PM the totality of puren-¢-
microcubes of types, . . ., pn) on M. We denote by"M the set-theoretic union
of TPu-+PnM for all (py, ..., pn) € II". In particular, T*M is usually denoted
by TM, and their elements are callgulire €-vectors tangent to MGiveny €
TPu--PrM ande e D, y! denotes the mappingl( ..., dy_1) € DP* x --- x
DPi-1 x DPi+t x ... x DPn | — y(dy, ..., di_1, € dis1, ..., Oh_1), whichis surely
a pure i — 1)-&-microcube of typefs, - .., Pi—1, Pi+1:---,Pn)-

An n-E-microcube on Ms a mapping fronD(1, .. ., k)" to M. We denote by
T"M the totality ofn-E-microcubes oM. In particular,2*M is usually denoted
by €M and their elements are call€dvectors tangent to MGivenx € M, we
denote the setét € TPM | t(0) = x} and{t € T M | t (0) = x} by T¥M and
Z«M, respectively. We have shown (Nishimura, 1998b, Section 4)&hht is an
R-E-module and that itp-component can naturally be identified wil§ M. We
have noted there also that tReC-moduleT, M is €-Euclidean.

Given @1, ..., pn) € II", the canonical injection oDPt x ... x DPn into
D(1, ..., k)" and the canonical projection &f(, ..., k)" ontoDP? x ... x DPn
are denoted by, . o, andmp,, . p,, respectively. The totality of € "M with

Y O lpy,...pn © Tpy,...p, = ¥ €an and shall hereafter be identified witPtPr M.

1.4. €-Vector Bundles

A mapping¢ : E — M of €-microlinear spaces is called&vector bundle
providing thatE, = ¢~1(x) is aC-EuclidearR-E-module for any € M. We call
M thebase spacef ¢ andE, thefiber over x The totality of mappings : M — E
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with £ o A = idy (idu denotes the identity transformation bf) is denoted by
Sec¢. The totality oft € TE with ¢ o t = 0 (the zera&-vector toM at¢ o t(0))
is to be put down as @-vector bundle oveE and is to be denoted by (E).

which is aC-microlinear space, then the trivial bundié x ~1” — M is aC-
vector bundle.

Various algebraic constructions in linedralgebra can be carried over to
@-vector bundles. I : E — M andyn : F — M are&-vector bundles over the
same base spadd, then their Whitney sung & n and the natural projection
Tyen : Z(,n) — M areC-vector bundles, wheres (¢, n) denotes the set-
theoretic union of Homtf, nx) for all x € M.

2. BRAIDED EXTERIOR DIFFERENTIAL CALCULUS

Giveny € TPu-PrM anda € RY, puren-E-microcubes;a anda; y of type
P1,.--»Pi—0q,...,Pn)ONM (1 <i < n) are defined to be

(1) ;@) (dy,...,dy) =y(d, ..., ad;, ..., dy)
(22) Gy)(dy ..., d) =y(d, ..., dia, ..., d)

forany @i, ...,dy) € DPt x ... x DPi70 x ... x DPn,
Let©ym, be the symmetricgroup ofthe 4dt . . ., n}. Giveny € TPu-Pn M
ando € ©ymy, a puren-E-microcubex, (y) of type O, -1(1), - - -, Po-1(n)) ONM

is defined as follows:

(2.3) Z,(¥)(d, ..., Gn) = ¥(sa) - - -, o)) fOr @any @i, ..., dy) € DPw x
cee X Dpnfl(n).

A (differential) n<-preform on Mis a mapping from T"M to R abiding
by the following conditions:

(2.4) 6(y@) =0(a11y) (L <i <n—1)whiled(yna) = 6(y) aforanya e R*
and anyy € T"M;

(2.5) |If y is a puren-E-microsquare of typep(, ..., pn) on M, thend(y) =
—8PLPg(E6i4n(¥)) (L <1 <n—1),where{, i + 1)isthe transposition
ofi andi + 1.

A differential n-C-preformé on M is called€-braidedif it abides by the
following condition:

(2.6) 0(via) =0(a11y) (1 =i <n—1)whiled(yna) = 6(y) aforanyp € II,
aecRPandanyy € T"M.

We denote b, (M) andEn(M) the totality of differentiah-E-preforms on
M and that of&-braided differentiah-E&-preforms onM, respectively.
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Giveny € "M anda € R, n-€-microcubegsaanday onM (1 <i <n)
are defined as in (2.1) and (2.2), respectively. GivenT"M ando € Sym,, an
n-C-microcubeX, (y) on M is defined as in (2.3). Adfferential) n-E-form on
M is a mapping@ from "M to R subject to the following conditions:

(2.7) 6(y;a) =0(aj1y) (1 <i <n—1)whiled(yna) =6(y) aforanya € R
and anyy € I"M; _

(2.8) If y is a puren-E-micosquare of typeft, ..., pn) on M, thend(y) =
—8PPng(Eii+n(¥) (1 <i <n-1).

We denote byE,(M) the totality of differentiah-E-forms onM.

Proposition 2.1. There is a natural bijective correspondence betwEg(M)
and Z,(M).

Proof: By the same token as in Nishimura (1999, Proposition 1.2).

Therefore we can loosely and will often identif¢braided differentiah-¢-
preforms and differentiah-E-forms, so that we will loosely denot®,(M) and
En(M) by the same symbd,(M).

A marked pure AE-microcube of typ€ps, ..., Py,) on M is a pair ¢/, €) of a
puren-E&-microcubey of type (1,...,pn) ONM ande = (ey, ..., &) € DPt x

type a1, ..., Pn) On M. We denote byi "M the set-theoretic union GfPx--PrM
for all (py, ..., pn) € II". B
Given @g,...,pn) € II", (y, €) € TPr+P"M andd € E,(M) with e = (ey,
.., &), po(y, €) € Ris defined as follows:

(2.9) oy, ) =0(r)er, ..., &

Givene = (e, ..., &) € DPt x -.. x DP anda € RY, elements; eand and
eaof DPt x ... x DPitd x ... x DP(1 <i < n) are defined to be

(2.10) ae=(ey,...,aq,...,€n)
(211) ga=(e,...,88,...,6)

Givene = (ey, ..., 6,) € DP* x ... x DPr ando € Sy, T, (€) € DP-—1w x
.. x DPo js defined to be

(212) Y () = (&) ---» €1(n)

Givenod € En(M), itis easy to see that the functiop - Tn(M) — R satisfies
the following properties withy, e) € TP»--P»M anda € R™.

(2.13) ws(via,e) = wo(ajv,€) =ags(y,e) (L <i <n)
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(2.14) go(y,68) = vo(v, a€e) = ags(y,€) (L<i<n)
(2.15) @y(y, ) = =8P P19 Aivigy (g ivn)(y), Zii+n(e)) (1<i<n-1)

Now we have the following converse.

Proposition 2.2. If a functiong from T"M to R abides by condition£2.13)—
(2.15) then there exists uniguee E,(M) such thaty = ¢y.

Proof: Bythe same token asin Lavendhomme (1996, Section 4.2, Proposition 2).
O

Givend € En(M), we definey, to be the function fronf”*l(M ) to R such
that for any {/, €) € TPr—PriM withe = (e, ..., €411),
(2.16) Yo(y.€) = T (-1 i (0(ve) — O(ri)er... & ...ena
whereq; = (IT]1! 8PP )(IT ) 6P<P).

Proposition 2.3. The above functiony, : T"™"'M — R satisfies conditions
(2.13)—(2.15).

Proof: Bythe sametokenasinLavendhomme (1996, Section 4.2, Proposition 3).
O

We denote bydé the element oE,,1(M) such thatpgy = ¥. Its existence
and uniqueness is guaranteed by Propositions 2.2 and 2.3. It is callext¢hier
E-derivativeof . Now we have a familyfd : £,(M) — En1(M)}nen of map-
pings, for which we have the following:

Proposition 2.4. dod = 0.

Proof: By the same token asin Lavendhomme (1996, Section 4.2, Proposition 1).
O

Proposition 2.5. If a differential nE-preformd on M is €-braided, then so is
de.

Proof: Bythe sametokenasin Nishimura (1999, Proposition2.5and Lemmas 2.6
and 2.7; 2000a, Lemmas 2.3 and 2.4)1

Therefore the family{d : £,(M) — Eny1(M)}neny Of mappings naturally
gives rise to a family{d : E,(M) — En+1(M)}neny Of mappings.
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If 9 : M — N a map of&-microlinear space angl: F — N is a&-vector
bundle, then the notion of &¢braided) differentiah-E&-preform onM and that of
differentialn-€-form on M discussed earlier can be generalized easily to that of a
(C-braided) differentialn-E-preform on M with values in relative togp and that of
adifferential n-form on M with values imrelative tog, as in Lavendhomme (1996,
Section 5.3.1). We denote B/(M > N;5),E"(M % N;n),andE"(M % N;»)
the totality of differentiain-C-prefroms onM with values iny relative tog, that
of €-braided differentiah-C-preforms onM with values inn relative tog, and
that of differentialn-C-forms onM with values iny relative tog, respectively.
A direct generalization of Proposition 2.1 enables us to ide&fiM 4N; n)
andE"(M 5 N;7), which we will often denote bg"(M % N;5).1f N = M and
¢ is the identity map igh of M, thenE"(M % N; n) is denoted also bg"(M; 7).

If nis furthermore a trivial bundl® x R — M, then&"(M; n) degenerates into
E"(M).

3. BRAIDED CONNECTIONS

Let ¢ : E — M be a€-vector bundle. AS-connectionon ¢ is a mapping

aecRandanyd € D(1, ..., k) we have that

(3.1) V(t,v)(0)=v

(3.2) V(ta,v)d) = V(t, v)(ad)

(3.3) V(t,va)d) = (V(, v)(d))a

(3.4) The mappingi € Ey)| — V(t, u)(d) € Eyq), denoted by @d) or P, IS
bijective and preservs grades (i.exd{Ef)) = Ejg, for anyp € II). Its
inverse is denoted b;@d = Og,0) - En@) = Exo). We call g;q) theparallel
transportfrom t(0) tot(d; alongt, while qg g) is called theparallel transport
from t(d) to t(0) alongt.

If the €-vector bundle; : E — M is a trivial bundleM x ~/"— M, and

(35) w(t=1-V( oL, 1(0)
Sincea(t) € V(E), there exist uniquen(t) € E,.jo)p € IT) such that
(3:6) @()(d) = 10) + Zpenp(t)eyp

for anyd e D(1, . .., k). We definew(t) to beEpenwp(t_).



Synthetic Braided Geometry I 1375

Proposition 3.1. Given ve E and xe M with x = ¢(V), the mappingt_e
(EP@--K)y | — w(t) € E satisfieg2.6), so thatw is a differentiall-E-form on E
with values in¢ relative to¢.
Proof: By (3.2)w satisfies (2.6), so that for amye R and anyd € D(1, ..., k),
(3.7) a(ta)(d)

= o(t)(ad)

= &(1)(Tpen Zqr=paqdr)

= 40) + Zpentp(®)(Eq+r=paqtr)

= 1(0) + Zrert(Spenteop()3p—)dr

Therefore

(3.8) a)(’tt_a) = Ereﬂ(zpeﬂwp(ﬁ_)ap—f)
= Zp,qel‘[wp(ﬁ_)aq
= a)(t_)a.,

as was claimed. O

We say thatv is the€-connectiorE-formof V.

(3.9) Qi) (i(d)) = 1(0) + Tpemwp(®)dp

Proof: Consider the mapping
d. d)e DA, ...k 1,...,K) | = Prera(i(0) + Spenwp(Dely) € E,

which coincides withv(¢ o t, 1(0)) on the firstD(Z, . . ., k) and withe(t) on the
secondD(1, ..., k). Therefore the mapping

deD(L....K) | > Peatg)(1(0) + Tpermwp(dp) € E

coincides witht, which implies the desired proposition o

Now suppose that we are given a mappingM — N of C-microlinear
spaces and@-vector bundle; : F — N endowed with &-connectioriv , which
shall be fixed throughout the rest of this section. Braided exterior differential
calculus discussed in the previous section (particularly Propositions 2.2 and 2.3)
can be generalized easily to braided covariant exterior differential calculus.



1376 Nishimura

Proposition 3.3. Given a differential né-formé on M with values in; relative
to ¢, there exists a unique differenti@h + 1)-&- form on M with values im
relative tog, to be denoted bg;60, such that for anyp, ..., pni1) € " and
any(y, €) € TPr-—PriiM with e= (e, ..., €1+1), We have

(3.10) dgé(y)er...ens1
= S 1 o (0(1) — Aoyy.) (O (7)1 @ . Onia,

wherey, is the tangent-vector to M assigning/(0,...,0,d,0,...,0) (d is

positioned at the ith slot) to eachd DP anda; = (nfl, ;8P P)(nj_3sP<P).

Proof: By a direct generalization of Proposition 2.30

We calldy6 thecovariant exteriofS-derivativeof 6.

4. INDUCED BRAIDED CONNECTIONS |

Let us define some inducéticonnections. Let : E —~ M andp: F - M
be €-vector bundles over the same base spslceith €-connectionv and V’
bestowed upon them. First we define an induedonnectionV & V' on the
Whitney suny & n as follows:

anyv, € Eyq), anyv, € Fygyananyd € D(1, ..., k).
Proposition 4.1. For anyt, € EP®--K) and anyt, e FP®--K) with ¢ D0k
(t;) = nPE-K(t,), we have
(4.2) (i ®1,) = o () © 0y (h),

wherew;,, w;, andw, denote th&f-connectiorlS-forms ofV @ V', V and, V/,
respectively.

by Proposition 3.2, that
43) g% (:(d) @ 1,(d)
= (t( (0) + Epel'la)(,p(tg)@] p) @ (tn(o) + ZpeH a)n,p(tg)@]p)
= (1 (0) @ £,(0)) + Zpem (@, p(l;) ® wyp(ty))dp
Therefore the desired proposition obtains by Proposition 3.2 again.

Corollary 4.2. For anyu € Sec; and anyv € Secn, we have
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(4.4) dvev(u®v)=dyu @ dyv

We now difine an induced-connectionv on . , as follows:

4.5) V(@ )@)V) = SNV CRIN D))
foranyt € MP&--K anyd e D(4, ..., k), any
Ve Z(¢, nyoyand any € Eyp).

(4.6) o, (i(1) = Sp,q.rer8®" 89P5PA(ap ([)q((O)) + L(0) (e (1),

whereo denote thel-connection form oW, andﬁ(t_) denotes the mapping
D(1,...,Kk) | = t(d)(t(d)). In particular, if the braiding happens to be symmet-
ric, then we have

4.7) ,{(©)) = Zprend® @p@O)) + H0)(w; ().

have, by Proposition 3.2, that
(4.8) o (D))
= qf 5 (@) (A 5 @)
= ({(0) + Zpen@p(®)dp)(t(0) + Zpermere,p(D)clp)
= (1(0) + Zp,qerdPdlp(@p[®)q) (1(0) + Sperieoe,p(D)dlp)
= 1(0)((0)) + Zp,qentd*Pelp(@p([))q(i(0)) + Zperrt(0)(@e,p(1)dp
= 1(0)((0)) + Tp,qerrd*Pelp(@p(D)q(Srent(0)) + Tperri(0)@e,p(1))dp
= 1(0)(x(0)) + Zp.q.rerd*P8P 4 (@p(D)q(H(0) )dp + Zperr(0)(r,p(D)dp
= 1(0)((0)) + Zperr{Zaq,remP " 89P5P9(@p(1))q(t(0)) + L(0) (e p(¥))}cp

Therefore the desired proposition obtains by Proposition 3.2 again.

Corollary 4.4. For anyu € Sect and any. € Secr (), we have

(4.9) dv () = Zpqr,emd® 8PP A2 0)q(1r) + 1(dv i)

In particular, if the braidingV is symmetric, then we have
(4.10) dv (1)) = Zp,r,emdP" (dE0)(er) + (dv )



1378 Nishimura

If » is the trivial bundleM x R — M and theE-connectionV’ is trivial,
then the@-corlpectiorﬁ is usually denoted by™*. If { = nandV = V', then the
¢-connectionV is usually denoted by'.

5. CURVATURE

Lets : E — M be al-vector bundle endowed with&connectioriv, which
shall be fixed throughout this section. The principal objective of this section is to
introduce a sort of curvature abiding by the so-called second Bianchi identity. First
let us introduce a preliminary version of curavature somewhat disobedient to the
second Bianchi identity, from which our desired curvature naturally follows. The
€-connectiorl-form w is surely an element d&,(E ENYVE ¢), and its covariant
exteriorC-derivativedvw € E,(E 5 M ; ¢) is called thecurvature@-form of the
first kindand denoted b2, for which we have

Proposition 5.1. For anyy e EP®*P@ and any(dy, d») € D(p) x D(q) with
y=C¢oy,i=y(,0), 2=y, ), ts=y(0,)and t = y(-, d2), we have

(5.1) EP9)'Q(y)did,
= Oty dy) © Atz,dp) (¥ (01, A2)) — Ota, ) © Gt ) (v (A, 02))

Proof: By the very definition of covariant exterid¥-differentiation, we have
(5.2) PN 'Q(y)didy

= o(y(, 0))d1 + ey any (@(¥ (dh, -)))d2
— Q. (@(¥ (- d2)))dy — (¥(0, -))d2

By Proposition 3.2 we have
(5.3) o(y (- 0))d1 = qey,ay (v (d1, 0)) — ¥(0, 0)
(54) q.ay(e(y(di, )))d2

= ((ty,d) { ¥tz 0) (¥ (01, d2)) — y(dy, O)}
= Oty dv) © Atz ) (¥ (01, d2)) — gty ) (¥ (D1, 0))

(5.5) Q) (@(¥ (-, d2)))ds

= Ots,dp) {Atta ) (¥ (d1, d2)) — ¥(0, d2)}

= Q(ts,dy) © Otta,dy) (¥ (A1, 02)) — O, (¥ (0, 02))
(5.6) w(y(0,-))d2 = Ggts,a,)(¥ (0, d2)) — ¥(0, 0)

Therefore the desired conclusion followsD
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Now we introduce another curvatu@'afgrm, to be called theurvature©-
form of the second kinand to be denoted i, as follows:

(5.7) Q(y) = Q(h(y)) for any C-microsquarey on E, whereh(y) denotes the
horizontal componenof 3 (cf. Moerdijk and Reyes, 1991, Chap.V.
Section 6) in the sense that for amit (d) € D(1, ..., k)?,

(5.8) h(y)(d1, d2) = Py (s ).d2) © P (-0)dr) (¥ (0, 0))
with y = ¢ o y. For the curvatur&-form of the second kind, we have

Proposition 5.2. Using the same notation as in Propositibri, we have

(5.9) (P9 Q(y)dhdz = 7(0, 0) = Uts.d) © Utach) © Ptanci) © Peta, (7 (0, 0)),

SO thatQ()7) depends only oy = ¢ o ¥ and v= y(0, 0), which enables us to
regard 2 as a function fronT2M to < (¢) in the sense tha®(y)(v) = Q(7).
Proof: Simply puth(y) in place ofy in Proposition 5.1. O

We now reckor€? as a function fromMP@--K? to & (¢) in the canonical
way, for which we have

on M with values int ). 1..,Q € Ea(M; 4 ().
Proof: We define a functiofy : M P k)2h>/|< E — EDP@--K? a5 follows:

(5.10) Oy, V)(d1, @) = Py(ey, 1.d2) © Pey (0, (V) for any 7, v) € MPE--k*
E and any {1, d») € D(4, ..., k).

Then it is easy to see that
(5.11) bH(ya,v) = bh(y,v);aforanya e R(i =1, 2).

SinceQ(y)(v) = Q(b(y, v)) and< satisfies (2.6)52 also satisfies (2.6). Now we
use the same notation as in Proposition 5.1 and 5.2. To sho®tsatisfies (2.5),
we Letvg = v and definer; andvs in order as follows:

(5.12) V1 = Qt5,dy) © Uta,h) © Pltz, ) © Py, cy) (Vo)
(5.13) V2 = Quy.dy) © lta,d) © Peta,dy) © Pota,cy) (V1)

On the one hand it follows directly from (5.12) and (5.13) that
(514) Vo2 = Vg

On the other hand we can calculatg and v, in order by making use of
Proposition 5.2:
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(5.15) V1 = Vo — (8P9)71Q(y)(Vo)dydz
(5.16) V2 = V1 — (8%P)"LQ( (1)) (v1)doth
= Vo — (8P 9)"1Q(y)(vo)ddy
— (8%P)"1Q(B(¥)) (Vo — (8P 9) "1y )(Vo)did)dody  [(5.15)]
= Vo — (8P9)~1Q(y)(Vo)dhdz — (89P)1Q(Z (1)) (Vo) do0ls
= Vo — Q(y)(Vo)dath — (84P)~1Q(Z(¥))(Vo)d201
[sinced;d, = §P9d,d,]
It follows from (5.14) and (5.16) that
(5.17) 8%PQ(y)(Vo) + Q((y))(Vo) = O,

which means tha® satisfies (2.5). O

The above proof is a prototype of the proof of Theorem 5.5 to come.
Now we give a braided, cubical version of Kock’s simplicial and combinatorial
Bianchi identity (Kock, 1996, Theorem 2).

Theorem5.4. Lety e MP®xD@xDPW) | et(dy, dp, d3) € D(p) x D(q) x D(r).

We denote pointsy(0, 0, 0),y(ds, 0, 0),y(0, dy, 0), ¥ (0, 0,ds), ¥ (d1, dy, 0),

)/(dl, 0,d3), ]/(0, do, d3), and ]/(dl, do, d3) by O, A, B, C D,E, F andgG, re-
spectively. These eight points are depicted figuratively as the eight vertices of a
cube:

Then we have

(5.18) PapoPpaoPgpo _RGFBD o Rgecro Repae 0 Pog © Pap 0 Poa o Rocea©
Rogrc © Roape = ido,

where

(5.19) for any adjacent verticeX, Y of the cube, R, denotes the parallel
transport fromX to Y along the line connectini andY (e.g., Ra and
Pao denotepg, (. ,0)d) and (. ,0).4y), respectively),
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(5.20) for any four vertices, Y, Z, W of the cube rounding one of the six facial
squares of the cube xR-w denotes Ry o Pzw o Pyz o Pxy (e.9., Roaps

denotegy, (o, 0)d;) © Ay( -, &,0),6)° Ply(h,,0).d) © Piy( - ,0,00ar @nd
(5.21) iy is the identity transfotmation of &=

Proof: Write over (5.18) exclusively in terms &y s, and write off all consec-
tive Pxy o Pyx's O

The above theorem gives rise to the following form of the second Bianchi
identity in our braided context.

Theorem 5.5. We have
(5.22) de$2=0,

whereds is the covariant exterio@-diffgrentiation with respect to the induced
¢-connectionV on ), and recall that2 € Ex(M; 7)), as was explained in
Proposition5.3.

Proof: The proof is carried out by the same method as in Proposition 5.3. Let
¥, 01, 02, d3,0,A,B,C,D,E,F,and Gbeasin Theorem5.4. Givea E, o, o, o),
we definev; € E, 0 0, 0(i =1, 2, 3, 4, 5, 6)in order as follows:

(5.23) vi = Roaps(Vo)
(5.24) v2 = Rogrc(v1)
(5.25) vz = Rocea(v2)
(5.26) V4 = Pao o Ppa o Pep © Repae © Ppg © Pap o Poa(Va)
= Pao o Ragep o Poa(Va)
(5.27) Vs = Pao o Ppa o Pep o Rgecro Pog o Pap © Poa(Va)
= Ppo © Raeep © Pea o Recrg o Pae © Rapce © Poa(Va)
= Ppo © Pea o Regpa © Recre o Reapc o Pag © Poa(Va)
= Rocea o Pco o Pec o Reepa © Recrg o Reape © Pce o Poco
Roaec(Va)
= Rocea 0 Pco o Pec o Regpa © Pce o Rerge© Pec 0 Reapg o Pce o
Poc o Roaec(Va)
(5.28) Vs = Pno © Poa o Pep o Rarap © Pog © Pap © Poa(Vs)
= Ppo © Poa o Rogrs © Pap o Poa(Vs)
= Roppa © Pso o Repar o Pos © Roaps(Vs)

Now we calculateyi(i = 1,..., 6) in order. It follows directly from Proposition
5.2 that

(5.29) v1 = Vo — (8”9)Q(y (-, -, 0))Vo)ddy
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The calculations of/, andvs are similar, so we present details of the former
calculation but simply register the result of the latter calculation, safely leaving its
detalils to the reader.
(5.30) vz =v; — (3qvf)71§z(y(0, -, ) (v1)d2d3  [Proposition 52]
= Vo — (PN Q(y(, -, 0)) Wo)dhdz — (897) 1 Q(» (0, -, )
x (Vo — 8P9Q(y (-, -, 0)) (vo)chdz)d2ds  [(5.29)]
= Vo — (PNIQ(y (-, -, 0)) (Vo)dhdz — (8%")1Q(y (O, -, -)) (Vo)dods

(5.31) vz =Vo— (8"9)IQ(y (-, -, 0) (Wo)drdz — (847)1Q(¥ (0, -, -)) (Vo)dz0s
+ (6" Qy (- 0,)) (Vo)dads
The three calculations @f;, vs, andvg are similar, so we present their details only
in case of the first, leaving details of the other two calculations to the reader.
(5.32) V4 = Pao o Ragap © Poa(Vo — (8P9)1Q(y (-, -, 0)) (vo)didy
— (597 (0, -, -)) (Vo)dads
+ (8P Q(y (-, 0,7)) (Vo)dads)  [(5.31)]
= Pao © Ragap(Poa(Vo) — (8P9) L Poa(Q(y (-, -, 0)) (vo))dyd2
— (8%7)*Poa(Q(y (0, -, -)) (Vo)) do0
+ (8P")LPoa(Q2(¥ (-, 0, ) (V0))d1ds)
= Pao(Poa(Vo) — (8P%) " Poa(S2(y (-, -, 0)) (Vo))d1d>
— (897) " Poa(Q(¥ (0, -, -)) (Vo))d203
+ (8P Poa(Q(y (-, 0,-)) (Vo))chds
+ (8% 1Q(y (01, -, -)) (Poa(Vo)
— (8%P) " Poa(Q(y (-, -, 0)) (Vo)) a2
— (879" Poa(Q(¥ (0, -, -)) (Vo))d03
+ (8"P)LPoa(Q(¥ (-, 0,)) (V0)))d103)ds
[Propositions 3 and 53]
= Vo — (8%P)*Q(y (-, -, 0)) (vo))dad
— (") (0, -, ) (Vo)dads + (8P) 1Ry (-, 0, -)) (Vo)chds
+ (897) " Pao(Q(y (dy, -, -)) (Poa(vo)))dads

(5.33) V5= Vo — (8P 7IQ(y(:, -, 0)) (Vo)dadz — (8%7)71Q(y (0, -, -)) (Vo)
+ (P")71Q(y (-, 0,)) (Vo)) ds
+ (8%7) "L Pao(Q2(y (d1, -, -)) (Poa(Vvo)))d20s
+ (8P9) " Pco((y (-, -, b)) (Poc(Vo))di s
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(5.34) Vg = Vo — (8P Q(y(, -, 0)) (Vo)) d
— (8%)7*Q(y (0, -, -)) (Vo)daUs
+ (") Qv (, 0,)) (Vo)dads
+ (897) " Pao (¥ (dy, -, -)) (Poa(vo)))dds
+ (8”9 Peo(Q(y (-, -, da)) (Poc(Vo)))didz
— (8P Peo(Q(y (-, da, -)) (Pos(Vo)))dids
It should be the case by Theorem 5.4 that= vo. Therefore

(5.35) PN IQ(y (- -, 0)) Wo)dadz + (897) 1Q(¥ (0, -, -)) (Vo) 20
— (") Q(y (-, 0,-)) (Vo)ds
— (897) " Pao((y (d1, -, -)) (Poa(Vo)))dods
— (8P9) " Peo(Q(y (-, -, ds,)) (Poc(Vo)))dada
+ (8P") " Pao(Q(y (-, d, -)) (Pos(V0))))d1ds = O
By multiplying -9 " §%" upon (5.35), we have
(5.36) 8P 8ITQ(y (-, -, 0)) (Vo)ddz + 8P I8P Q(y (0, -, -)) (Vo)d20a
—8P959TQ(y (-, 0,)) (vo)d1d3
— 8PP Pao(Q(y (0, -, -)) (Poa(Vo)))dads
— P15 Poo(Q(y (- +» ds)) (Poc(Vo)))didz
+ 8P95%" Pgo(Q( (-, d2, -)) (Pog(V0))))dids = 0

Sincevp € E, (0,0,00Was chosen arbitrarily, the proof is completen

6. INDUCED BRAIDED CONNECTIONS Il

We calculate the curvature of the second kind of the indé&@bnnections
dealt with in Section 4. Let : E - M andn: F — M be €-vector bundles
over the same base spadeembellished with-connection&V andV’, as in that
section.

Proposition 6.1. For anyy € MP@--K* we have

(6.1) Qeenly) =2:(r) & Q).
where Q.a,, 2, and 2, denote the curvature forms of the second kindSef
connectionsv @ V’, V, andV’, respectively.

Proof: Letve V' € (E® F), (0.0 We assume that € MPP*P@ | etd; e
D(p) andd, € D(q). Lett; = (-, 0), to = y(d1, -),ts = (0, -) andty = y (-, dp).
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By Proposition 5.2, we have
(6.2) (9P) Qe (¥)(v & V)chd;
= (V& V) — i) © Aty © Py © Plyap(V @ V)
={v- q(vtg,dz) ° q(Y4,d1) ° p(vtz,dz) ° p(vtl,dl)(v)}
& {V' — A, ) © Rt © Pl © Pl (V)
= (89P) 710, (¥)(v)chd @ (89P) 712, (")(v') 02
= (8%P)H (r)(V) © 2, (¥ )(V)}h 0z

Therefore the desired proposition obtainsg

Proposition 6.2. Lety € MP®*P@ and¥ e (¢, n), (0,0 Then we have
(6.3) Q)©) = —0 0 Q(y) + Tr.ccrr 87787, (1)) 0 G

where &, 525, and 2, denote the curvature forms of the second kindSef
connectionsv, V, andV’, respectively. In particular, if the braiding happens
to be symmetric, then we have

6.4) Q1)) = =00 @ (1) + et 458, () 0 Vs

Proof: Letd; € D(p) andd, € D(q). By Proposition 5.2 we have
(6:5) 67P)18(y)(@)chd
=V- Q(i,dz) ° qz,dl) ° p(i,dz) ° p(z,dl)(v)
=V =AY, ) © o) © Plip.dy) © Pty © V0
Ot ) © Az k) © Pl © Pl
=V- {idFy(O.O) - ((Sq'p)‘lfln(y)dldz} oVoidg,qq + (Bq'p)_1§2¢ (y)dldz}
=0 — {idg, o0 — (69P) " Srend" P da(2, (¥))r } © {Zsemi¥s}o
{ide, o) + (89P)~1Q (¥)d02}
= —(8%P) M0 0 Q¢ (y)cuc
+ (89P) 1 serrd " PHISPHATHS(Q, (1)) 0 Vst
= (89P) H—V 0 Q¢ (¥) + Zr serrd" P+ SPTAH(Q, (y))r 0 Us}dada

Therefore the desired proposition obtains.
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